Détail de l'auteur
Auteur A. Pizurica |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semisupervised local discriminant analysis for feature extraction in hyperspectral images / W. Liao in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)
[article]
Titre : Semisupervised local discriminant analysis for feature extraction in hyperspectral images Type de document : Article/Communication Auteurs : W. Liao, Auteur ; A. Pizurica, Auteur ; Paul Scheunders, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 184 - 198 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification semi-dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] matriceRésumé : (Auteur) We propose a novel semisupervised local discriminant analysis method for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (local linear feature extraction methods and supervised method (linear discriminant analysis) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Experimental results on four real hyperspectral images demonstrate that the proposed method compares favorably with conventional feature extraction methods. Numéro de notice : A2013-013 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2200106 Date de publication en ligne : 28/06/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2200106 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32151
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 1 Tome 1 (January 2013) . - pp 184 - 198[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013011A RAB Revue Centre de documentation En réserve L003 Disponible