Détail de l'auteur
Auteur Paul Scheunders |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements Type de document : Article/Communication Auteurs : Bikram Koirala, Auteur ; Zohreh Zahiri, Auteur ; Paul Scheunders, Auteur Année de publication : 2020 Article en page(s) : pp 7393 - 7405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] biochimie
[Termes IGN] diagnostic foliaire
[Termes IGN] feuille (végétation)
[Termes IGN] indice de végétation
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régression
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Spectral measurements are commonly applied for the nondestructive estimation of leaf parameters, such as the concentrations of chlorophyll a and b, carotenoid, anthocyanin, brown pigment, leaf water content, and leaf mass per area for the quantification of vegetation physiology. The most popular way to estimate these parameters is by using spectral vegetation indices. The use of biochemical models allows us to use the full wavelength range (400–2500 nm) and to physically interpret the result. However, their performance is usually lower than that of supervised machine learning regression techniques. Machine learning regression techniques, on the other hand, have the disadvantage that the relationship between estimated parameters and the reflectance/transmission spectra is unclear. In this article, a hybrid between a supervised learning method and physical modeling for the estimation of leaf parameters is proposed. In this method, a machine learning regression technique is applied to learn a mapping from the true hyperspectral data set to a data set that follows the PROSPECT model. The PROSPECT model then reveals the actual leaf parameters. Two mapping methods, based on Gaussian processes (GPs) and kernel ridge regression (KRR) are proposed. As an alternative, mapping onto the leaf absorption spectra is proposed as well. The proposed methodology not only estimates the leaf parameters with a lower error but also solves the interpretation problem of the parameters estimated by the advanced machine learning regression techniques. This method is validated on the ANGERS and LOPEX data set. Numéro de notice : A2020-589 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2982263 Date de publication en ligne : 02/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2982263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95919
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7393 - 7405[article]A multilinear mixing model for nonlinear spectral unmixing / Rob Heylen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : A multilinear mixing model for nonlinear spectral unmixing Type de document : Article/Communication Auteurs : Rob Heylen, Auteur ; Paul Scheunders, Auteur Année de publication : 2016 Article en page(s) : pp 240 - 251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] modèle linéaireRésumé : (Auteur) In hyperspectral unmixing, bilinear and linear-quadratic models have become popular recently, and also the polynomial postnonlinear model shows promising results. These models do not consider endmember interactions involving more than two endmembers, although such interactions might compose a nontrivial part of the observed spectrum in scenarios involving bright materials and complex geometrical structures, such as vegetation and intimate mixtures. In this paper, we present an extension of these models to include an infinite number of interactions. Several technical problems, such as divergence of the resulting series, can be avoided by introducing an optical interaction probability, which becomes the only free parameter of the model in addition to the abundances. We present an unmixing strategy based on this multilinear mixing (MLM) model; present comparisons with the bilinear models and the Hapke model for intimate mixing; and show that, in several scenarios, the MLM model obtains superior results. Numéro de notice : A2016-072 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2453915 En ligne : https://doi.org/10.1109/TGRS.2015.2453915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79837
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 240 - 251[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible Semisupervised local discriminant analysis for feature extraction in hyperspectral images / W. Liao in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)
[article]
Titre : Semisupervised local discriminant analysis for feature extraction in hyperspectral images Type de document : Article/Communication Auteurs : W. Liao, Auteur ; A. Pizurica, Auteur ; Paul Scheunders, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 184 - 198 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification semi-dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] matriceRésumé : (Auteur) We propose a novel semisupervised local discriminant analysis method for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (local linear feature extraction methods and supervised method (linear discriminant analysis) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Experimental results on four real hyperspectral images demonstrate that the proposed method compares favorably with conventional feature extraction methods. Numéro de notice : A2013-013 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2200106 Date de publication en ligne : 28/06/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2200106 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32151
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 1 Tome 1 (January 2013) . - pp 184 - 198[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013011A RAB Revue Centre de documentation En réserve L003 Disponible