Détail de l'auteur
Auteur Chunjiang Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas / Guijun Yang in ISPRS Journal of photogrammetry and remote sensing, vol 77 (March 2013)
[article]
Titre : Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas Type de document : Article/Communication Auteurs : Guijun Yang, Auteur ; Ruiliang Pu, Auteur ; Jixian Zhang, Auteur ; Chunjiang Zhao, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 79 - 93 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] couvert végétal
[Termes IGN] effet atmosphérique
[Termes IGN] image Landsat-TM
[Termes IGN] montagne
[Termes IGN] Pékin (Chine)
[Termes IGN] variabilité
[Termes IGN] variation saisonnièreRésumé : (Auteur) Fractional vegetation cover (FVC) is an important indicator of mountain ecosystem status. A study on the seasonal changes of FVC can be beneficial for regional eco-environmental security, which contributes to the assessment of mountain ecosystem recovery and supports mountain forest planning and landscape reconstruction around megacities, for example, Beijing, China. Remote sensing has been demonstrated to be one of the most powerful and feasible tools for the investigation of mountain vegetation. However, topographic and atmospheric effects can produce enormous errors in the quantitative retrieval of FVC data from satellite images of mountainous areas. Moreover, the most commonly used analysis approach for assessing FVC seasonal fluctuations is based on per-pixel analysis regardless of the spatial context, which results in pixel-based FVC values that are feasible for landscape and ecosystem applications. To solve these problems, we proposed a new method that incorporates the use of a revised physically based (RPB) model to correct both atmospheric and terrain-caused illumination effects on Landsat images, an improved vegetation index (VI)-based technique for estimating the FVC, and an adaptive mean shift approach for object-based FVC segmentation. An array of metrics for segmented FVC analyses, including a variety of area metrics, patch metrics, shape metrics and diversity metrics, was generated. On the basis of the individual segmented FVC values and landscape metrics from multiple images of different dates, remote sensing of the seasonal variability of FVC was conducted over the mountainous area of Beijing, China. The experimental results indicate that (a) the mean value of the RPB–NDVI in all seasons was increased by approximately 10% compared with that of the atmospheric correction-NDVI; (b) a strong consistency was demonstrated between ground-based FVC observations and FVC estimated through remote sensing technology (R2 = 0.8527, RMSE = 0.0851); and (c) seasonal changes in the landscape characteristics existed, and the landscape diversity reached its maximum in May and June in the study area. Numéro de notice : A2013-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2012.11.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2012.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32255
in ISPRS Journal of photogrammetry and remote sensing > vol 77 (March 2013) . - pp 79 - 93[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013031 RAB Revue Centre de documentation En réserve L003 Disponible