Détail de l'auteur
Auteur Ali Ozgun Ok |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Asli Ozdarici-Ok, Auteur Année de publication : 2020 Article en page(s) : pp 557-569 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse de groupement
[Termes IGN] Citrus limon
[Termes IGN] détection de contours
[Termes IGN] état de l'art
[Termes IGN] extraction d'arbres
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stochastique
[Termes IGN] TurquieRésumé : (Auteur) In this study, we present an original unified strategy for the precise extraction of individual citrus fruit trees from single digital surface model (DSM) input data. A probabilistic method combining the circular shape information with the knowledge of the local maxima in the DSM has been used for the detection of the candidate trees. An active contour is applied within each detected region to extract the borders of the objects. Thereafter, all extracted objects are seamlessly divided into clusters considering a new feature data set formed by (1) the properties of trees, (2) planting parameters, and (3) neighborhood relations. This original clustering stage has led to two new contributions: (1) particular objects or clustered structures having distinctive characters and relationships other than the citrus objects can be identified and eliminated, and (2) the information revealed by clustering can be used to recover missing citrus objects within and/or nearby each cluster. The main finding of this research is that a successful clustering can provide valuable input for identifying incorrect and missing information in terms of citrus tree extraction. The proposed strategy is validated in eight test sites selected from the northern part of Mersin province of Turkey. The results achieved are also compared with the state-of-the-art methods developed for tree extraction, and the success of the proposed unified strategy is clearly highlighted. Numéro de notice : A2020-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.557 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.557 Format de la ressource électronique : LUR article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95933
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 557-569[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts / Ali Ozgun Ok in ISPRS Journal of photogrammetry and remote sensing, vol 86 (December 2013)
[article]
Titre : Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur Année de publication : 2013 Article en page(s) : pp 21 - 40 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection de régions
[Termes IGN] détection du bâti
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] ombre
[Termes IGN] segmentation d'imageRésumé : (Auteur) In this study, we propose a novel methodology for automated detection of buildings from single very-high-resolution (VHR) multispectral images. The methodology uses the principal evidence of buildings: the shadows that they cast. We model the directional spatial relationship between buildings and their shadows using a recently proposed probabilistic landscape approach. An effective shadow post-processing step is developed to focus on landscapes that belong to building regions. The building regions are detected using an original two-level graph theory approach. In the first level, each shadow region is addressed separately, and building regions are identified via iterative graph cuts designed in two-label partitioning. The final building regions are characterised in a second level in which the previously labelled building regions are subjected to a single-step multi-label graph optimisation performed over the entire image domain. Numerical assessments performed on 16 VHR GeoEye-1 images demonstrate that the proposed approach is highly robust and reliable. A distinctive specialty of the proposed approach is its applicability to buildings with diverse characteristics as well as to VHR images with significantly different illumination properties. Numéro de notice : A2013-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.09.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.09.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32839
in ISPRS Journal of photogrammetry and remote sensing > vol 86 (December 2013) . - pp 21 - 40[article]Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery / Ali Ozgun Ok in IEEE Transactions on geoscience and remote sensing, vol 51 n° 3 Tome 2 (March 2013)
[article]
Titre : Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Caglar Seranas, Auteur ; Baris Yuksel, Auteur Année de publication : 2013 Article en page(s) : pp 1701 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection de régions
[Termes IGN] détection du bâti
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Quickbird
[Termes IGN] information complexe
[Termes IGN] ombre
[Termes IGN] partition des donnéesRésumé : (Auteur) This paper introduces a new approach for the automated detection of buildings from monocular very high resolution (VHR) optical satellite images. First, we investigate the shadow evidence to focus on building regions. To do that, we propose a new fuzzy landscape generation approach to model the directional spatial relationship between buildings and their shadows. Once all landscapes are collected, a pruning process is developed to eliminate the landscapes that may occur due to non-building objects. The final building regions are detected by GrabCut partitioning approach. In this paper, the input requirements of the GrabCut partitioning are automatically extracted from the previously determined shadow and landscape regions, so that the approach gained an efficient fully automated behavior for the detection of buildings. Extensive experiments performed on 20 test sites selected from a set of QuickBird and Geoeye-1 VHR images showed that the proposed approach accurately detects buildings with arbitrary shapes and sizes in complex environments. The tests also revealed that even under challenging environmental and illumination conditions, reasonable building detection performances could be achieved by the proposed approach. Numéro de notice : A2013-135 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2207905 En ligne : https://doi.org/10.1109/TGRS.2012.2207905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32273
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 3 Tome 2 (March 2013) . - pp 1701 - 1717[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013031B RAB Revue Centre de documentation En réserve L003 Disponible