Détail de l'auteur
Auteur Lieng-Chien Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Topological gradient connection analysis for feature detection / Chao-Yuan Lo in Photogrammetric record, vol 28 n° 141 (March - May 2013)
[article]
Titre : Topological gradient connection analysis for feature detection Type de document : Article/Communication Auteurs : Chao-Yuan Lo, Auteur ; Lieng-Chien Chen, Auteur Année de publication : 2013 Article en page(s) : pp 7 - 26 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] connexité (topologie)
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Canny
[Termes IGN] gradient
[Termes IGN] ligne caractéristique
[Termes IGN] lissage de courbe
[Termes IGN] niveau de gris (image)
[Termes IGN] relation topologiqueRésumé : (Auteur) Edges and corners are two major image features in the modelling of man-made objects; an edge provides strong geometric orientation and corners possess good localisation. Feature detection is the basis of image processing for numerous applications such as image registration and object modelling. Completeness and localisation are the two major considerations for these applications; however, illumination, reflectance and shadows may interfere with image grey values to produce various gradients along an edge. Thus, threshold selection is an important step in obtaining suitable features in target-dependent methods as improper selection might cause information loss and broken edges. Instead of threshold selection, this study therefore proposes a feature extraction method using topological gradient connection (TGC) analysis involving three steps: grey value refinement, gradient computation and topological connection analysis. The first step uses a Gaussian filter to smooth the grey value image. The second step computes directional gradients to identify ridge pixels and collect feature candidates. The third step analyses adjacent candidates based on the criterion of topological connection. This three-step tracing procedure combines these connected candidates into a single object. The proposed scheme employs different images derived from various sensors and compares them with the Canny operator (using manually selected thresholds) and manually plotted corners for detection ability assessment. Experimental results indicate that the automatic results are more complete for subtle feature lines than the Canny edges. In addition, the proposed method provides higher flexibility in selecting suitable feature layers for different applications. Numéro de notice : A2013-149 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/j.1477-9730.2012.00703.x Date de publication en ligne : 16/12/2012 En ligne : https://doi.org/10.1111/j.1477-9730.2012.00703.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32287
in Photogrammetric record > vol 28 n° 141 (March - May 2013) . - pp 7 - 26[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 106-2013011 RAB Revue Centre de documentation En réserve L003 Disponible