Détail de l'auteur
Auteur Jianya Gong |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GeoRec: Geometry-enhanced semantic 3D reconstruction of RGB-D indoor scenes / Linxi Huan in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : GeoRec: Geometry-enhanced semantic 3D reconstruction of RGB-D indoor scenes Type de document : Article/Communication Auteurs : Linxi Huan, Auteur ; Xianwei Zheng, Auteur ; Jianya Gong, Auteur Année de publication : 2022 Article en page(s) : pp 301 - 314 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] données localisées 3D
[Termes IGN] géométrie
[Termes IGN] image RVB
[Termes IGN] maillage
[Termes IGN] modélisation sémantique
[Termes IGN] objet 3D
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] scène intérieureRésumé : (auteur) Semantic indoor 3D modeling with multi-task deep neural networks is an efficient and low-cost way for reconstructing an indoor scene with geometrically complete room structure and semantic 3D individuals. Challenged by the complexity and clutter of indoor scenarios, the semantic reconstruction quality of current methods is still limited by the insufficient exploration and learning of 3D geometry information. To this end, this paper proposes an end-to-end multi-task neural network for geometry-enhanced semantic 3D reconstruction of RGB-D indoor scenes (termed as GeoRec). In the proposed GeoRec, we build a geometry extractor that can effectively learn geometry-enhanced feature representation from depth data, to improve the estimation accuracy of layout, camera pose and 3D object bounding boxes. We also introduce a novel object mesh generator that strengthens the reconstruction robustness of GeoRec to indoor occlusion with geometry-enhanced implicit shape embedding. With the parsed scene semantics and geometries, the proposed GeoRec reconstructs an indoor scene by placing reconstructed object mesh models with 3D object detection results in the estimated layout cuboid. Extensive experiments conducted on two benchmark datasets show that the proposed GeoRec yields outstanding performance with mean chamfer distance error for object reconstruction on the challenging Pix3D dataset, 70.45% mAP for 3D object detection and 77.1% 3D mIoU for layout estimation on the commonly-used SUN RGB-D dataset. Especially, the mesh reconstruction sub-network of GeoRec trained on Pix3D can be directly transferred to SUN RGB-D without any fine-tuning, manifesting a high generalization ability. Numéro de notice : A2022-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.02.014 Date de publication en ligne : 03/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100139
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 301 - 314[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Layout graph model for semantic façade reconstruction using laser point clouds / Hongchao Fan in Geo-spatial Information Science, vol 24 n° 3 (July 2021)
[article]
Titre : Layout graph model for semantic façade reconstruction using laser point clouds Type de document : Article/Communication Auteurs : Hongchao Fan, Auteur ; Yuefeng Wang, Auteur ; Jianya Gong, Auteur Année de publication : 2021 Article en page(s) : pp 403 - 421 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme du recuit simulé
[Termes IGN] appariement de graphes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] enrichissement sémantique
[Termes IGN] façade
[Termes IGN] processus stochastique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) Building façades can feature different patterns depending on the architectural style, functionality, and size of the buildings; therefore, reconstructing these façades can be complicated. In particular, when semantic façades are reconstructed from point cloud data, uneven point density and noise make it difficult to accurately determine the façade structure. When investigating façade layouts, Gestalt principles can be applied to cluster visually similar floors and façade elements, allowing for a more intuitive interpretation of façade structures. We propose a novel model for describing façade structures, namely the layout graph model, which involves a compound graph with two structure levels. In the proposed model, similar façade elements such as windows are first grouped into clusters. A down-layout graph is then formed using this cluster as a node and by combining intra- and inter-cluster spacings as the edges. Second, a top-layout graph is formed by clustering similar floors. By extracting relevant parameters from this model, we transform semantic façade reconstruction to an optimization strategy using simulated annealing coupled with Gibbs sampling. Multiple façade point cloud data with different features were selected from three datasets to verify the effectiveness of this method. The experimental results show that the proposed method achieves an average accuracy of 86.35%. Owing to its flexibility, the proposed layout graph model can deal with different types of façades and qualities of point cloud data, enabling a more robust and accurate reconstruction of façade models. Numéro de notice : A2021-724 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10095020.2021.1922316 Date de publication en ligne : 14/05/2021 En ligne : https://doi.org/10.1080/10095020.2021.1922316 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98644
in Geo-spatial Information Science > vol 24 n° 3 (July 2021) . - pp 403 - 421[article]Towards generating network of bikeways from Mapillary data / Xuan Ding in Computers, Environment and Urban Systems, vol 88 (July 2021)
[article]
Titre : Towards generating network of bikeways from Mapillary data Type de document : Article/Communication Auteurs : Xuan Ding, Auteur ; Hongchao Fan, Auteur ; Jianya Gong, Auteur Année de publication : 2021 Article en page(s) : n° 101632 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] cycliste
[Termes IGN] données localisées des bénévoles
[Termes IGN] gestion des itinéraires
[Termes IGN] Mapillary
[Termes IGN] OpenStreetMap
[Termes IGN] Suède
[Termes IGN] système d'information géographiqueRésumé : (auteur) Nowadays, biking is flourishing in many Western cities. While many roads are used for both cars and bicycles, buffered bike lanes are marked for the safety of cyclists. In many cities, segregated paths are built up to have physical separation from motor vehicles. These types of biking ways are regarded as attributes in geographic information system (GIS) data. This information is required and important in the service of route planning, as cyclists may prefer certain types of bikeways. This paper presents a framework for generating networks of bikeways with attribute information from the data collected on the collaborative street view data platform Mapillary. The framework consists of two layers: The first layer focuses on constructing a bikeway road network using Global Positioning System (GPS) information of Mapillary images. Mapillary sequences are classified into walking, cycling, driving (ordinary road), and driving (motorway) trajectories based on the transportation mode with a trained XGBoost classifier. The bikeway road network is then extracted from cycling and driving (ordinary road) trajectories using a raster-based method. The second layer focuses on extracting attribute information from Mapillary images. Cycling-specific information (i.e., bicycle signs/markings) is extracted using a two-stage detection and classification model. A series of quantitative evaluations based on a case study demonstrated the ability and potential of the framework for extracting bikeway road information to enrich the existing OSM cycling road data. Numéro de notice : A2021-432 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101632 Date de publication en ligne : 17/04/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101632 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97798
in Computers, Environment and Urban Systems > vol 88 (July 2021) . - n° 101632[article]Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss Type de document : Article/Communication Auteurs : Xianwei Zheng, Auteur ; Linxi Huan, Auteur ; Gui-Song Xia, Auteur ; Jianya Gong, Auteur Année de publication : 2020 Article en page(s) : pp 15-28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification basée sur les régions
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] image à très haute résolution
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Parsing very high resolution (VHR) urban scene images into regions with semantic meaning, e.g. buildings and cars, is a fundamental task in urban scene understanding. However, due to the huge quantity of details contained in an image and the large variations of objects in scale and appearance, the existing semantic segmentation methods often break one object into pieces, or confuse adjacent objects and thus fail to depict these objects consistently. To address these issues uniformly, we propose a standalone end-to-end edge-aware neural network (EaNet) for urban scene semantic segmentation. For semantic consistency preservation inside objects, the EaNet model incorporates a large kernel pyramid pooling (LKPP) module to capture rich multi-scale context with strong continuous feature relations. To effectively separate confusing objects with sharp contours, a Dice-based edge-aware loss function (EA loss) is devised to guide the EaNet to refine both the pixel- and image-level edge information directly from semantic segmentation prediction. In the proposed EaNet model, the LKPP and the EA loss couple to enable comprehensive feature learning across an entire semantic object. Extensive experiments on three challenging datasets demonstrate that our method can be readily generalized to multi-scale ground/aerial urban scene images, achieving 81.7% in mIoU on Cityscapes Test set and 90.8% in the mean F1-score on the ISPRS Vaihingen 2D Test set. Code is available at: https://github.com/geovsion/EaNet. Numéro de notice : A2020-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.019 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96228
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 15-28[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines / Jinshan Cao in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines Type de document : Article/Communication Auteurs : Jinshan Cao, Auteur ; Jianhong Fu, Auteur ; Xiuxiao Yuan, Auteur ; Jianya Gong, Auteur Année de publication : 2017 Article en page(s) : pp 174 - 185 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] compensation non linéaire
[Termes IGN] correction géométrique
[Termes IGN] erreur systématique
[Termes IGN] image ZiYuan-3
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] orientation du capteur
[Termes IGN] point d'appui
[Termes IGN] résidu
[Termes IGN] spline cubique
[Termes IGN] transformation affineRésumé : (Auteur) Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1.093 pixels, which were respectively 42.1%, 48.3%, and 54.8% better than those achieved before the nonlinear bias compensation. Numéro de notice : A2017-725 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88410
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 174 - 185[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Extrapolated georeferencing of high-resolution satellite imagery based on the strip constraint / Jinshan Cao in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 7 (July 2017)PermalinkA morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)PermalinkGeometric calibration of Ziyuan-3 three-line cameras using ground control lines / Jinshan Cao in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 11 (November 2016)PermalinkRendering interior-filled polygonal vector data in a virtual globe / Mengyun Zhou in International journal of geographical information science IJGIS, vol 30 n° 11-12 (November - December 2016)PermalinkAn improved ANUDEM method combining topographic correction and DEM interpolation / Xianwei Zheng in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)PermalinkIn-orbit geometric calibration and validation of ZY-3 three-line cameras based on CCD-detector look angles / Jinshan Cao in Photogrammetric record, vol 30 n° 150 (June - August 2015)PermalinkFast construction of global pyramids for very large satellite images / Longgang Xiang in Transactions in GIS, vol 17 n° 2 (April 2013)Permalink