Détail de l'auteur
Auteur Giorgos Mountrakis |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Fusion of optical, radar and waveform LiDAR observations for land cover classification Type de document : Article/Communication Auteurs : Huiran Jin, Auteur ; Giorgos Mountrakis, Auteur Année de publication : 2022 Article en page(s) : pp 171 - 190 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion d'images
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-TM
[Termes IGN] image multitemporelle
[Termes IGN] occupation du solRésumé : (Auteur) Land cover is an integral component for characterizing anthropogenic activity and promoting sustainable land use. Mapping distribution and coverage of land cover at broad spatiotemporal scales largely relies on classification of remotely sensed data. Although recently multi-source data fusion has been playing an increasingly active role in land cover classification, our intensive review of current studies shows that the integration of optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR) observations has not been thoroughly evaluated. In this research, we bridged this gap by i) summarizing related fusion studies and assessing their reported accuracy improvements, and ii) conducting our own case study where for the first time fusion of optical, radar and waveform LiDAR observations and the associated improvements in classification accuracy are assessed using data collected by spaceborne or appropriately simulated platforms in the LiDAR case. Multitemporal Landsat-5/Thematic Mapper (TM) and Advanced Land Observing Satellite-1/ Phased Array type L-band SAR (ALOS-1/PALSAR) imagery acquired in the Central New York (CNY) region close to the collection of airborne waveform LVIS (Land, Vegetation, and Ice Sensor) data were examined. Classification was conducted using a random forest algorithm and different feature sets in terms of sensor and seasonality as input variables. Results indicate that the combined spectral, scattering and vertical structural information provided the maximum discriminative capability among different land cover types, giving rise to the highest overall accuracy of 83% (2–19% and 9–35% superior to the two-sensor and single-sensor scenarios with overall accuracies of 64–81% and 48–74%, respectively). Greater improvement was achieved when combining multitemporal Landsat images with LVIS-derived canopy height metrics as opposed to PALSAR features, suggesting that LVIS contributed more useful thematic information complementary to spectral data and beneficial to the classification task, especially for vegetation classes. With the Global Ecosystem Dynamics Investigation (GEDI), a recently launched LiDAR instrument of similar properties to the LVIS sensor now operating onboard the International Space Station (ISS), it is our hope that this research will act as a literature summary and offer guidelines for further applications of multi-date and multi-type remotely sensed data fusion for improved land cover classification. Numéro de notice : A2022-228 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.010 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100214
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 171 - 190[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt vol 145 - part A - November 2018 - Deep Learning RS Data (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Giorgos Mountrakis
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
Titre : vol 145 - part A - November 2018 - Deep Learning RS Data Type de document : Périodique Auteurs : Giorgos Mountrakis, Éditeur scientifique Année de publication : 2018 Langues : Anglais (eng) Numéro de notice : 081-201811 Affiliation des auteurs : non IGN Nature : Numéro de périodique En ligne : https://www.sciencedirect.com/journal/isprs-journal-of-photogrammetry-and-remote [...] Format de la ressource électronique : URL Bulletin Permalink : https://documentation.ensg.eu/index.php?lvl=bulletin_display&id=31347 [n° ou bulletin]Contient
- Multi-scale object detection in remote sensing imagery with convolutional neural networks / Zhipeng Deng in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
- A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification / Wei Han in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
- Semantic labeling in very high resolution images via a self-cascaded convolutional neural network / Yoncheng Liu in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
- Land cover mapping at very high resolution with rotation equivariant CNNs : Towards small yet accurate models / Diego Marcos in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
- A new deep convolutional neural network for fast hyperspectral image classification / Mercedes Eugenia Paoletti in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
- Pan-sharpening via deep metric learning / Yinghui Xing in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Relative importance analysis of Landsat, waveform LIDAR and PALSAR inputs for deciduous biomass estimation / Alyssa Endres in European journal of remote sensing, vol 49 n° 1 (2016)
[article]
Titre : Relative importance analysis of Landsat, waveform LIDAR and PALSAR inputs for deciduous biomass estimation Type de document : Article/Communication Auteurs : Alyssa Endres, Auteur ; Giorgos Mountrakis, Auteur ; Huiran Jin, Auteur ; Wei Zhuang, Auteur ; Ioannis Manakos, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 795 - 807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] biomasse aérienne
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] feuillu
[Termes IGN] fusion de données
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image LandsatRésumé : (auteur) Aboveground forest biomass estimation is an integral component for climate change, carbon stocks assessment, biodiversity and forest health. LiDAR (Light Detection And Ranging), specifically NASA’s Laser Vegetation Imaging Sensor (LVIS), PALSAR (Phased Array type L-band Synthetic Aperture Radar), and Landsat data have been previously used in biomass estimation with promising results when used individually. In this manuscript, all three products are jointly utilized for the first time to assess their importance for deciduous biomass estimation. Results indicate that LVIS inputs are ranked as most important followed by PALSAR inputs. Particularly for PALSAR, scenes acquired in May and August were ranked higher compared to other months. Numéro de notice : A2016-827 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5721/EuJRS20164942 En ligne : http://dx.doi.org/10.5721/EuJRS20164942 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82707
in European journal of remote sensing > vol 49 n° 1 (2016) . - pp 795 - 807[article]An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data / Wei Zhuang in ISPRS Journal of photogrammetry and remote sensing, vol 95 (September 2014)
[article]
Titre : An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data Type de document : Article/Communication Auteurs : Wei Zhuang, Auteur ; Giorgos Mountrakis, Auteur Année de publication : 2014 Article en page(s) : pp 81 – 92 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] empreinte
[Termes IGN] filtrage numérique d'image
[Termes IGN] forêt
[Termes IGN] forme d'onde
[Termes IGN] groupe
[Termes IGN] identification automatique
[Termes IGN] onde lidar
[Termes IGN] surface du sol
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] traitement de donnéesRésumé : (Auteur) Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA’s major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors. Numéro de notice : A2014-474 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.06.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=74051
in ISPRS Journal of photogrammetry and remote sensing > vol 95 (September 2014) . - pp 81 – 92[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014091 RAB Revue Centre de documentation En réserve L003 Disponible Assessing reference dataset representativeness through confidence metrics based on information density / Giorgos Mountrakis in ISPRS Journal of photogrammetry and remote sensing, vol 78 (April 2013)
[article]
Titre : Assessing reference dataset representativeness through confidence metrics based on information density Type de document : Article/Communication Auteurs : Giorgos Mountrakis, Auteur ; Bo Xi, Auteur Année de publication : 2013 Article en page(s) : pp 129 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de sensibilité
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de confiance
[Termes IGN] classification dirigée
[Termes IGN] densité d'information
[Termes IGN] données localisées de référence
[Termes IGN] jeu de données localisées
[Termes IGN] representativitéRésumé : (Auteur) Land cover maps obtained from classification of remotely sensed imagery provide valuable information in numerous environmental monitoring and modeling tasks. However, many uncertainties and errors can directly or indirectly affect the quality of derived maps. This work focuses on one key aspect of the supervised classification process of remotely sensed imagery: the quality of the reference dataset used to develop a classifier. More specifically, the representative power of the reference dataset is assessed by contrasting it with the full dataset (e.g. entire image) needing classification. Our method is applicable in several ways: training or testing datasets (extracted from the reference dataset) can be compared with the full dataset. The proposed method moves beyond spatial sampling schemes (e.g. grid, cluster) and operates in the multidimensional feature space (e.g. spectral bands) and uses spatial statistics to compare information density of data to be classified with data used in the reference process. The working hypothesis is that higher information density, not in general but with respect to the entire classified image, expresses higher confidence in obtained results. Presented experiments establish a close link between confidence metrics and classification accuracy for a variety of image classifiers namely maximum likelihood, decision tree, Backpropagation Neural Network and Support Vector Machine. A sensitivity analysis demonstrates that spatially-continuous reference datasets (e.g. a square window) have the potential to provide similar classification confidence as typically-used spatially-random datasets. This is an important finding considering the higher acquisition costs for randomly distributed datasets. Furthermore, the method produces confidence maps that allow spatially-explicit comparison of confidence metrics within a given image for identification of over- and under-represented image portions. The current method is presented for individual image classification but, with sufficient evaluation from the remote sensing community it has the potential to become a standard for reference dataset reporting and thus allowing users to assess representativeness of reference datasets in a consistent manner across different classification tasks. Numéro de notice : A2013-183 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.01.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.01.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32321
in ISPRS Journal of photogrammetry and remote sensing > vol 78 (April 2013) . - pp 129 - 147[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013041 RAB Revue Centre de documentation En réserve L003 Disponible Multi-scale spatiotemporal analyses of moose-vehicle collisions: a case study in northern Vermont / Giorgos Mountrakis in International journal of geographical information science IJGIS, vol 23 n°11-12 (november 2009)PermalinkDeveloping collaborative classifiers using an Expert-based Model / Giorgos Mountrakis in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 7 (July 2009)PermalinkSupporting quality-based image retrieval through user preference learning / Giorgos Mountrakis in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 8 (August 2004)Permalink