Détail de l'auteur
Auteur Zhenghong Jia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An experimental comparison of semi-supervised learning algorithms for multispectral image classification / Enmei Tu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 4 (April 2013)
[article]
Titre : An experimental comparison of semi-supervised learning algorithms for multispectral image classification Type de document : Article/Communication Auteurs : Enmei Tu, Auteur ; Jie Yang, Auteur ; Jiangxiong Fang, Auteur ; Zhenghong Jia, Auteur ; Nikola Kasabov, Auteur Année de publication : 2013 Article en page(s) : pp 347 - 357 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat
[Termes IGN] image multibande
[Termes IGN] série de TaylorRésumé : (Auteur) Semi-Supervised Learning (SSL) method has recently caught much attention in the fields of machine learning and computer vision owing to its superiority in classifying abundant unlabelled samples using a few labeled samples. The goal of this paper is to provide an experimental efficiency comparison between graph based SSL algorithms and traditional supervised learning algorithms (e.g., support vector machines) for multispectral image classification. This research shows that SSL algorithms generally outperform supervised learning algorithms in both classification accuracy and anti-noise ability. In the experiments carried out on two data sets (hyperspectral image and Landsat image), the mean overall accuracies (OAs) of supervised learning algorithms are 15 percent and 86 percent, while the mean oas of SSL algorithms are 26 percent and 99 percent. To overcome the polynomial complexity of SSL algorithms, we also developed a linear-complexity algorithm by employing multivariate Taylor Series Expansion (TSE) and Woodbury Formula. Numéro de notice : A2013-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.4.347 En ligne : https://doi.org/10.14358/PERS.79.4.347 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32343
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 4 (April 2013) . - pp 347 - 357[article]