Détail de l'auteur
Auteur Nikola Kasabov |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering / Liyuan Ma in European journal of remote sensing, vol 53 n° 1 (2020)
[article]
Titre : Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering Type de document : Article/Communication Auteurs : Liyuan Ma, Auteur ; Jia Zhenhong, Auteur ; Jie Yang, Auteur ; Nikola Kasabov, Auteur Année de publication : 2020 Article en page(s) : pp 1 -13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] coefficient de corrélation
[Termes IGN] détection de changement
[Termes IGN] distance euclidienne
[Termes IGN] image multibande
[Termes IGN] itération
[Termes IGN] masque
[Termes IGN] pondérationRésumé : (auteur) In the present study, an improved iteratively reweighted multivariate alteration detection (IR-MAD) algorithm was proposed to improve the contribution of weakly correlated bands in multi-spectral image change detection. In the proposed algorithm, each image band was given a different weight through single-band iterative weighting, improving the correlation between each pair of bands. This method was used to obtain the characteristic difference in the diagrams of the band that contain more variation information. After removing Gaussian noise from each feature-difference graph, the difference graphs of each band were fused into a change-intensity graph using the Euclidean distance formula. Finally, unsupervised fuzzy C-means (FCM) clustering was used to perform binary clustering on the fused difference graphs to obtain the change detection results. By comparing the original multivariate alteration detection (MAD) algorithm, the IR-MAD algorithm and the proposed IR-MAD algorithm, which used a mask to eliminate strong changes, the experimental results revealed that the multi-spectral change detection results of the proposed algorithm are closer to the actual value and had higher detection accuracy than the other algorithms. Numéro de notice : A2020-164 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2019.1707124 Date de publication en ligne : 26/12/2020 En ligne : https://doi.org/10.1080/22797254.2019.1707124 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94831
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 1 -13[article]An experimental comparison of semi-supervised learning algorithms for multispectral image classification / Enmei Tu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 4 (April 2013)
[article]
Titre : An experimental comparison of semi-supervised learning algorithms for multispectral image classification Type de document : Article/Communication Auteurs : Enmei Tu, Auteur ; Jie Yang, Auteur ; Jiangxiong Fang, Auteur ; Zhenghong Jia, Auteur ; Nikola Kasabov, Auteur Année de publication : 2013 Article en page(s) : pp 347 - 357 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat
[Termes IGN] image multibande
[Termes IGN] série de TaylorRésumé : (Auteur) Semi-Supervised Learning (SSL) method has recently caught much attention in the fields of machine learning and computer vision owing to its superiority in classifying abundant unlabelled samples using a few labeled samples. The goal of this paper is to provide an experimental efficiency comparison between graph based SSL algorithms and traditional supervised learning algorithms (e.g., support vector machines) for multispectral image classification. This research shows that SSL algorithms generally outperform supervised learning algorithms in both classification accuracy and anti-noise ability. In the experiments carried out on two data sets (hyperspectral image and Landsat image), the mean overall accuracies (OAs) of supervised learning algorithms are 15 percent and 86 percent, while the mean oas of SSL algorithms are 26 percent and 99 percent. To overcome the polynomial complexity of SSL algorithms, we also developed a linear-complexity algorithm by employing multivariate Taylor Series Expansion (TSE) and Woodbury Formula. Numéro de notice : A2013-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.4.347 En ligne : https://doi.org/10.14358/PERS.79.4.347 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32343
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 4 (April 2013) . - pp 347 - 357[article]