Détail de l'auteur
Auteur Lorenzo Bruzzone |
Documents disponibles écrits par cet auteur (31)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
DiResNet: Direction-aware residual network for road extraction in VHR remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : DiResNet: Direction-aware residual network for road extraction in VHR remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 10243 - 10254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation d'imageRésumé : (auteur) The binary segmentation of roads in very high resolution (VHR) remote sensing images (RSIs) has always been a challenging task due to factors such as occlusions (caused by shadows, trees, buildings, etc.) and the intraclass variances of road surfaces. The wide use of convolutional neural networks (CNNs) has greatly improved the segmentation accuracy and made the task end-to-end trainable. However, there are still margins to improve in terms of the completeness and connectivity of the results. In this article, we consider the specific context of road extraction and present a direction-aware residual network (DiResNet) that includes three main contributions: 1) an asymmetric residual segmentation network with deconvolutional layers and a structural supervision to enhance the learning of road topology (DiResSeg); 2) a pixel-level supervision of local directions to enhance the embedding of linear features; and 3) a refinement network to optimize the segmentation results (DiResRef). Ablation studies on two benchmark data sets (the Massachusetts data set and the DeepGlobe data set) have confirmed the effectiveness of the presented designs. Comparative experiments with other approaches show that the proposed method has advantages in both overall accuracy and F1-score. The code is available at: https://github.com/ggsDing/DiResNet . Numéro de notice : A2021-870 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3034011 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3034011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99128
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10243 - 10254[article]SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images / Daifeng Peng in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images Type de document : Article/Communication Auteurs : Daifeng Peng, Auteur ; Lorenzo Bruzzone, Auteur ; Yongjun Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5891 - 5906 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches. Numéro de notice : A2021-530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3011913 Date de publication en ligne : 06/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3011913 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97986
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5891 - 5906[article]LANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
[article]
Titre : LANet: Local attention embedding to improve the semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Hao Tang, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 426 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de données
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] décodage
[Termes IGN] distribution spatiale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] segmentation sémantiqueRésumé : (auteur) The trade-off between feature representation power and spatial localization accuracy is crucial for the dense classification/semantic segmentation of remote sensing images (RSIs). High-level features extracted from the late layers of a neural network are rich in semantic information, yet have blurred spatial details; low-level features extracted from the early layers of a network contain more pixel-level information but are isolated and noisy. It is therefore difficult to bridge the gap between high- and low-level features due to their difference in terms of physical information content and spatial distribution. In this article, we contribute to solve this problem by enhancing the feature representation in two ways. On the one hand, a patch attention module (PAM) is proposed to enhance the embedding of context information based on a patchwise calculation of local attention. On the other hand, an attention embedding module (AEM) is proposed to enrich the semantic information of low-level features by embedding local focus from high-level features. Both proposed modules are lightweight and can be applied to process the extracted features of convolutional neural networks (CNNs). Experiments show that, by integrating the proposed modules into a baseline fully convolutional network (FCN), the resulting local attention network (LANet) greatly improves the performance over the baseline and outperforms other attention-based methods on two RSI data sets. Numéro de notice : A2021-035 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2994150 Date de publication en ligne : 27/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2994150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96737
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 426 - 435[article]A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images / David Pirrone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images Type de document : Article/Communication Auteurs : David Pirrone, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2020 Article en page(s) : pp 4780 - 4795 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification automatique
[Termes IGN] classification non dirigée
[Termes IGN] coordonnées polaires
[Termes IGN] détection de changement
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] méthode des vecteurs de changement
[Termes IGN] polarimétrie radar
[Termes IGN] radar à antenne synthétiqueRésumé : (auteur) Change detection (CD) is a crucial topic in many remote sensing applications. In the recent years, satellite polarimetric synthetic aperture radar (PolSAR) systems (e.g., the Sentinel-1 constellation) became a suitable tool for multitemporal monitoring due to the regular acquisitions with a short revisit time in different polarimetric channels. Methods for CD in PolSAR data mainly focus on binary CD (i.e., they provide information about the presence/absence of change only), whereas the polarimetric enhanced information provides multiple features that can be exploited for performing multiclass CD. In this article, we introduce a novel framework for the characterization of multitemporal changes in dual-polarimetric data. The framework is based on the definition of polarimetric change vectors (PCVs) and their representation in a polar coordinate system. PCVs allow characterizing and, thus, to separate multiclass changes in terms of target properties of the single-time scenes and the scattering theory. The proposed model is used to: 1) derive the statistical behaviors of change and no change classes in PolSAR multitemporal images; 2) design an automatic and unsupervised strategy to estimate the optimal number of changes; and 3) distinguish no change from change classes and the kinds of change from each other. An experimental analysis has been conducted on three multitemporal PolSAR data sets having different complexities in terms of number and kinds of change classes. The results confirm the effectiveness of the proposed approach and the better performance with respect to both specific techniques for CD in dual-pol SAR data and a general multiclass CD method, not designed for PolSAR data. Numéro de notice : A2020-390 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2966865 Date de publication en ligne : 04/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2966865 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95373
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4780 - 4795[article]A novel sharpening approach for superresolving multiresolution optical images / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : A novel sharpening approach for superresolving multiresolution optical images Type de document : Article/Communication Auteurs : Claudia Paris, Auteur ; José Bioucas-Dias, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1545 - 1560 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] problème inverseRésumé : (Auteur) This paper aims to provide a compact superresolution formulation specific for multispectral (MS) multiresolution optical data, i.e., images characterized by different scales across different spectral bands. The proposed method, named multiresolution sharpening approach (MuSA), relies on the solution of an optimization problem tailored to the properties of those images. The superresolution problem is formulated as the minimization of an objective function containing a data-fitting term that models the blurs and downsamplings of the different bands and a patch-based regularizer that promotes image self-similarity guided by the geometric details provided by the high-resolution bands. By exploiting the approximately low-rank property of the MS data, the ill-posedness of the inverse problem in hand is strongly reduced, thus sharply improving its conditioning. The state-of-the-art color block-matching and 3D filtering (C-BM3D) image denoiser is used as a patch-based regularizer by leveraging the “plug-and-play” framework: the denoiser is plugged into the iterations of the alternating direction method of multipliers. The main novelties of the proposed method are: 1) the introduction of an observation model tailored to the specific properties of (MS) multiresolution images and 2) the exploitation of the high-spatial-resolution bands to guide the grouping step in the color block-matching and 3D filtering (C-BM3D) denoiser, which constitutes a form of regularization learned from the high-resolution channels. The results obtained on the real and synthetic Sentinel 2 data sets give an evidence of the effectiveness of the proposed approach. Numéro de notice : A2019-129 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867284 Date de publication en ligne : 26/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867284 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92458
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1545 - 1560[article]Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery / Lichao Mou in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)PermalinkA local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)PermalinkA growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)PermalinkA novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)PermalinkAn internal crown geometric model for conifer species classification with high-density LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)PermalinkA hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)PermalinkKernel-based domain-invariant feature selection in hyperspectral images for transfer learning / Claudio Persello in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)PermalinkUnsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)PermalinkAn approach to fine coregistration between very high resolution multispectral images based on registration noise distribution / Youkyung Han in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkSequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)Permalink