Détail de l'auteur
Auteur Chuang Shi |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Temporal spectrum of spatial correlations between GNSS station position time series / Yujiao Niu in Journal of geodesy, vol 97 n° 2 (February 2023)
[article]
Titre : Temporal spectrum of spatial correlations between GNSS station position time series Type de document : Article/Communication Auteurs : Yujiao Niu, Auteur ; Paul Rebischung , Auteur ; Min Li, Auteur ; Na Wei, Auteur ; Chuang Shi, Auteur ; Zuheir Altamimi , Auteur Année de publication : 2023 Article en page(s) : n° 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatio-temporelle
[Termes IGN] bruit blanc
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] filtrage du bruit
[Termes IGN] série temporelle
[Termes IGN] station GNSS
[Termes IGN] transformation de Fourier
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) The background noise in Global Navigation Satellite Systems (GNSS) station position time series is known to be both temporally and spatially correlated. Its temporal correlations are well modeled and routinely taken into account when deriving parameters of interest like station velocities. On the other hand, a general model of the spatial correlations in GNSS time series is lacking, and they are usually ignored, although their consideration could benefit several purposes such as offset detection, velocity estimation or spatial filtering. In order to improve the realism of current spatio-temporal correlation models, we investigate in this study how the spatial correlations of GNSS time series vary with the temporal frequency. A frequency-dependent measure of the spatial correlations is therefore introduced and applied to station position time series from the latest reprocessing campaign of the International GNSS Service (IGS), as well as to Precise Point Positioning time series provided by the Nevada Geodetic Laboratory (NGL). Different spatial correlation regimes are thus evidenced at different temporal frequencies. The different levels of spatial correlations between IGS and NGL datasets furthermore suggest that some part of the spatially correlated background noise in GNSS time series consists of GNSS errors rather than aperiodic Earth surface deformation signal. Numéro de notice : A2023-226 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-023-01703-7 Date de publication en ligne : 06/02/2023 En ligne : https://doi.org/10.1007/s00190-023-01703-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102746
in Journal of geodesy > vol 97 n° 2 (February 2023) . - n° 12[article]Quantifying discrepancies in the three-dimensional seasonal variations between IGS station positions and load models / Yujiao Niu in Journal of geodesy, vol 96 n° 4 (April 2022)
[article]
Titre : Quantifying discrepancies in the three-dimensional seasonal variations between IGS station positions and load models Type de document : Article/Communication Auteurs : Yujiao Niu, Auteur ; Na Wei, Auteur ; Min Li, Auteur ; Paul Rebischung , Auteur ; Chuang Shi, Auteur ; Guo Chen, Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 31 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] déformation de la croute terrestre
[Termes IGN] déformation de surface
[Termes IGN] effet de charge
[Termes IGN] Europe (géographie politique)
[Termes IGN] signal GNSS
[Termes IGN] station GNSS
[Termes IGN] surcharge atmosphérique
[Termes IGN] surcharge hydrologique
[Termes IGN] surcharge océanique
[Termes IGN] variation saisonnièreRésumé : (auteur) Seasonal deformation related to mass redistribution on the Earth’s surface can be recorded by continuous global navigation satellite system (GNSS) and simulated by surface loading models. It has been reported that obvious discrepancies exist in the seasonal deformation between GNSS estimates and modeled loading displacements, especially in the horizontal components. The three-dimensional seasonal deformation of 900 GNSS stations derived from the International GNSS Service (IGS) second reprocessing are compared with those obtained from geophysical loading models. The reduction ratio of the weighted mean amplitude of GNSS seasonal signals induced by loading deformation correction is adopted to evaluate the consistency of seasonal deformation between them. Results demonstrate that about 43% of GNSS-derived vertical annual deformation can be explained by the loading models, while in the horizontal components, it is less than 20%. To explore the remaining GNSS seasonal variations unexplained by loading models, the potential contributions from Inter-AC disagreement, GNSS draconitic errors, regional/local-scale loading and loading model errors are investigated also using the reduction ratio metric. Comparison of GNSS annual signals between each IGS analysis center (AC) and the IGS combined solutions indicate that more than 25% (horizontal) and 10% (vertical) of the annual discrepancies between GNSS and loading models can be attributed to Inter-AC disagreement caused by different data processing software implementations and/or choices of the analysis strategies. Removing the draconitic errors shows an improvement of about ~ 3% in the annual vertical reduction ratio for the stations with more than fifteen years observations. Moreover, significant horizontal discrepancies between GNSS and loading models are found for the stations located in Continental Europe, which may be dominated by the regional/local-scale loading. The loading model errors can explain at least 6% of the remaining GNSS annual variations in the East and Up components. It has been verified that the contribution of thermoelastic deformation to the GNSS seasonal variations is about 9% and 7% for the horizontal and vertical directions, respectively. Apart from these contributors, there are still ~ 50% (horizontal) and ~ 30% (vertical) of the GNSS annual variations that need to be explained. Numéro de notice : A2022-940 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01618-9 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s00190-022-01618-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102745
in Journal of geodesy > vol 96 n° 4 (April 2022) . - n° 31[article]Evaluation of three ionospheric delay computation methods for ground-based GNSS receivers / Liang Chen in GPS solutions, vol 22 n° 4 (October 2018)
[article]
Titre : Evaluation of three ionospheric delay computation methods for ground-based GNSS receivers Type de document : Article/Communication Auteurs : Liang Chen, Auteur ; Wenting Yi, Auteur ; Weiwei Song, Auteur ; Chuang Shi, Auteur ; Yidong Lou, Auteur ; Cheng Cao, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] erreur systématique inter-systèmes
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur GNSS
[Termes IGN] retard ionosphèrique
[Vedettes matières IGN] Traitement de données GNSSMots-clés libres : carrier-to-code leveling (CCL) method ionospheric-free Hatch–Melbourne–Wubbena (HMW) function Résumé : (Auteur) GNSS observables for ionospheric estimation are commonly based on carrier-to-code leveling (CCL) and precise point positioning (PPP) methods. The CCL method is a geometry-free method which uses carrier phase to level pseudorange observation for decreasing multipath error and observation noise. However, the ionospheric observable based on the CCL has been proven to be affected by leveling errors. The leveling errors are caused by pseudorange multipath and intraday variation of receiver DCB. To obtain more accurate ionospheric observable, the PPP method takes advantage of precise satellite-to-ground range for retrieving slant total electron content and is less affected by the leveling errors. Previous studies have only proven that the ionospheric observables extracted by the two methods are affected by the leveling errors. The influence on ionospheric observable by the pseudorange inter-receiver satellite bias (IRSB) of the receiver has not been taken into consideration. Also, the magnitude of the differences between the ionospheric observables extracted by the two methods has also not been given. In this work, three methods, namely, the CCL, the conventional ionospheric-free PPP method which uses the ionospheric-free Hatch–Melbourne–Wubbena (HMW) function, and the University of Calgary (UOFC) PPP method, are selected to analyze and compare the differences of ionospheric observables and the global ionospheric maps, using a large number of measured data from international GNSS service global stations. Experimental results show that the accuracy of ionospheric observables obtained by the three methods is not only related to the leveling error, but also pseudorange IRSB. The IRSB of the receiver exerts a major effect on the ionospheric observables obtained by the CCL method and a minor effect on the ionospheric observables obtained by the HMW and UOFC methods. The accuracies in the latter case are similar and superior to those obtained by the CCL. The differences of the ionospheric observables obtained by the CCL and UOFC methods, or the CCL and HMW methods, are at decimeter level, whereas the difference of the ionospheric observables obtained by the UOFC and HMW methods is at centimeter level. The UOFC method presented the highest single-frequency pseudorange positioning accuracy using estimated global ionospheric products, followed by the HMW and the CCL methods which presented the lowest positioning accuracy. Numéro de notice : A2018-376 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0788-9 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1007/s10291-018-0788-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90780
in GPS solutions > vol 22 n° 4 (October 2018)[article]Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning / Fu Zheng in Journal of geodesy, vol 92 n° 5 (May 2018)
[article]
Titre : Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning Type de document : Article/Communication Auteurs : Fu Zheng, Auteur ; Yidong Lou, Auteur ; Shengfeng Gu, Auteur ; Xiaopeng Gong, Auteur ; Chuang Shi, Auteur Année de publication : 2018 Article en page(s) : pp 545 – 560 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Chine
[Termes IGN] données météorologiques
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] propagation troposphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] temps réelRésumé : (Auteur) During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2–7 and 20–50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP. Numéro de notice : A2018-148 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1080-4 Date de publication en ligne : 29/10/2017 En ligne : https://doi.org/10.1007/s00190-017-1080-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89759
in Journal of geodesy > vol 92 n° 5 (May 2018) . - pp 545 – 560[article]Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations / Min Li in Journal of geodesy, vol 91 n° 11 (November 2017)
[article]
Titre : Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations Type de document : Article/Communication Auteurs : Min Li, Auteur ; Wenwen Li, Auteur ; Chuang Shi, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1313 - 1327 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] analyse comparative
[Termes IGN] correction du trajet multiple
[Termes IGN] Feng-Yun-3
[Termes IGN] orbite géostationnaire
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par GPS
[Termes IGN] précision du positionnement
[Termes IGN] satellite météorologiqueRésumé : (Auteur) The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month’s worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in 2∘×2∘ grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions. Numéro de notice : A2017-705 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1027-9 En ligne : https://doi.org/10.1007/s00190-017-1027-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88086
in Journal of geodesy > vol 91 n° 11 (November 2017) . - pp 1313 - 1327[article]Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously / Jianghui Geng in Journal of geodesy, vol 91 n° 4 (April 2017)PermalinkAn enhanced algorithm to estimate BDS satellite’s differential code biases / Chuang Shi in Journal of geodesy, vol 90 n° 2 (February 2016)PermalinkBeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable / Shengfeng Gu in Journal of geodesy, vol 89 n° 10 (october 2015)PermalinkInstantaneous ambiguity resolution for URTK and its seamless transition with PPP-AR / Xuan Zou in GPS solutions, vol 19 n° 4 (october 2015)PermalinkIonospheric effects in uncalibrated phase delay estimation and ambiguity-fixed PPP based on raw observable model / Shengfeng Gu in Journal of geodesy, vol 89 n° 5 (May 2015)PermalinkReal-time high-precision earthquake monitoring using single-frequency GPS receivers / Min Li in GPS solutions, vol 19 n° 1 (January 2015)PermalinkHigh-rate precise point positioning (PPP) to measure seismic wave motions : an experimental comparison of GPS PPP with inertial measurement units / Peiliang Xu in Journal of geodesy, vol 87 n° 4 (April 2013)Permalink