Détail de l'auteur
Auteur Ping Zhong |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning to diversify deep belief networks for hyperspectral image classification / Ping Zhong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : Learning to diversify deep belief networks for hyperspectral image classification Type de document : Article/Communication Auteurs : Ping Zhong, Auteur ; Zhiqiang Gong, Auteur ; Shutao Li, Auteur ; Carola-Bibiane Schönlieb, Auteur Année de publication : 2017 Article en page(s) : pp 3516 - 3530 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification par réseau neuronal
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal convolutif
[Termes IGN] théorie de Dempster-ShaferRésumé : (Auteur) In the literature of remote sensing, deep models with multiple layers have demonstrated their potentials in learning the abstract and invariant features for better representation and classification of hyperspectral images. The usual supervised deep models, such as convolutional neural networks, need a large number of labeled training samples to learn their model parameters. However, the real-world hyperspectral image classification task provides only a limited number of training samples. This paper adopts another popular deep model, i.e., deep belief networks (DBNs), to deal with this problem. The DBNs allow unsupervised pretraining over unlabeled samples at first and then a supervised fine-tuning over labeled samples. But the usual pretraining and fine-tuning method would make many hidden units in the learned DBNs tend to behave very similarly or perform as “dead” (never responding) or “potential over-tolerant” (always responding) latent factors. These results could negatively affect description ability and thus classification performance of DBNs. To further improve DBN’s performance, this paper develops a new diversified DBN through regularizing pretraining and fine-tuning procedures by a diversity promoting prior over latent factors. Moreover, the regularized pretraining and fine-tuning can be efficiently implemented through usual recursive greedy and back-propagation learning framework. The experiments over real-world hyperspectral images demonstrated that the diversity promoting prior in both pretraining and fine-tuning procedure lead to the learned DBNs with more diverse latent factors, which directly make the diversified DBNs obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods. Numéro de notice : A2017-478 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2675902 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2675902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86403
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3516 - 3530[article]Active learning with gaussian process classifier for hyperspectral image classification / Shujing Sun in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)
[article]
Titre : Active learning with gaussian process classifier for hyperspectral image classification Type de document : Article/Communication Auteurs : Shujing Sun, Auteur ; Ping Zhong, Auteur ; Huaitie Xiao, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1746 - 1760 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] image hyperspectraleRésumé : (Auteur) Gaussian process (GP) classifiers represent a powerful and interesting theoretical framework for the Bayesian classification of hyperspectral images. However, the collection of labeled samples is time consuming and costly for hyperspectral data, and the training samples available are often not enough for an adequate learning of the GP classifier. Moreover, the computational cost of performing inference using GP classifiers scales cubically with the size of the training set. To address the limitations of GP classifiers for hyperspectral image classification, reducing the label cost and keeping the training set in a moderate size, this paper introduces an active learning (AL) strategy to collect the most informative training samples for manual labeling. First, we propose three new AL heuristics based on the probabilistic output of GP classifiers aimed at actively selecting the most uncertain and confusing candidate samples from the unlabeled data. Moreover, we develop an incremental model updating scheme to avoid the repeated training of the GP classifiers during the AL process. The proposed approaches are tested on the classification of two realworld hyperspectral data. Comparison with random sampling method reveals a better accuracy gain and faster convergence with the number of queries, and comparison with recent active learning approaches shows a competitive performance. Experimental results also verified the efficiency of the incremental model updating scheme. Numéro de notice : A2015-171 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2347343 Date de publication en ligne : 29/08/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2347343 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75887
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 4 (April 2015) . - pp 1746 - 1760[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015041 RAB Revue Centre de documentation En réserve L003 Disponible Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery / Ping Zhong in IEEE Transactions on geoscience and remote sensing, vol 51 n° 4 Tome 2 (April 2013)
[article]
Titre : Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery Type de document : Article/Communication Auteurs : Ping Zhong, Auteur ; Runsheng Wang, Auteur Année de publication : 2013 Article en page(s) : pp 2260 - 2275 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] spectroscopieRésumé : (Auteur) Denoising of hyperspectral imagery in the domain of imaging spectroscopy by conditional random fields (CRFs) is addressed in this work. For denoising of hyperspectral imagery, the strong dependencies across spatial and spectral neighbors have been proved to be very useful. Many available hyperspectral image denoising algorithms adopt multidimensional tools to deal with the problems and thus naturally focus on the use of the spectral dependencies. However, few of them were specifically designed to use the spatial dependencies. In this paper, we propose a multiple-spectral-band CRF (MSB-CRF) to simultaneously model and use the spatial and spectral dependencies in a unified probabilistic framework. Furthermore, under the proposed MSB-CRF framework, we develop two hyperspectral image denoising algorithms, which, thanks to the incorporated spatial and spectral dependencies, can significantly remove the noise, while maintaining the important image details. The experiments are conducted in both simulated and real noisy conditions to test the proposed denoising algorithms, which are shown to outperform the popular denoising methods described in the previous literatures Numéro de notice : A2013-224 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2209656 En ligne : https://doi.org/10.1109/TGRS.2012.2209656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32362
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 4 Tome 2 (April 2013) . - pp 2260 - 2275[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013041B RAB Revue Centre de documentation En réserve L003 Disponible