Détail de l'auteur
Auteur Onisimo Mutanga |
Documents disponibles écrits par cet auteur (24)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
[article]
Titre : Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR Type de document : Article/Communication Auteurs : Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur ; Romano Lottering, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 465 - 480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] classification non dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] espèce exotique envahissante
[Termes IGN] forêt ripicole
[Termes IGN] image AISA+
[Termes IGN] image hyperspectrale
[Termes IGN] précision cartographique
[Termes IGN] semis de pointsRésumé : (auteur) Accurate spatial information on the location of invasive alien plants (IAPs) in riparian environments is critical to fulfilling a comprehensive weed management regime. This study aimed to automatically map the occurrence of riparian bugweed (Solanum mauritianum) using airborne AISA Eagle hyperspectral data (393 nm–994 nm) in conjunction with LiDAR derived height. Utilising an unsupervised random forest (RF) classification approach and Anselin local Moran’s I clustering, results indicate that the integration of LiDAR with minimum noise fraction (MNF) produce the best detection rate (DR) of 88%, the lowest false positive rate (FPR) of 7.14% and an overall mapping accuracy of 83% for riparian bugweed. In comparison, utilising the original hyperspectral wavebands with and without LiDAR produced lower DRs and higher FPRs with overall accuracies of 79% and 68% respectively. This research demonstrates the potential of combining spectral information with LiDAR to accurately map IAPs using an automated unsupervised RF anomaly detection framework. Numéro de notice : A2021-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614101 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614101 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97084
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 465 - 480[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] carte forestière
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] KwaZulu-Natal (Afrique du Sud)
[Termes IGN] Pinus (genre)
[Termes IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021011 RAB Revue Centre de documentation En réserve L003 Disponible Evaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
[article]
Titre : Evaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data Type de document : Article/Communication Auteurs : Charles Otunga, Auteur ; John Odindi, Auteur ; Onisimo Mutanga, Auteur ; Clément Adjorlolo, Auteur Année de publication : 2019 Article en page(s) : pp 1123 - 1143 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] analyse discriminante
[Termes IGN] bande rouge
[Termes IGN] bande spectrale
[Termes IGN] carte de la végétation
[Termes IGN] Festuca (genre)
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] paturage
[Termes IGN] prairie
[Termes IGN] répartition géographiqueRésumé : (auteur) Integrating the Red Edge channel in satellite sensors is valuable for plant species discrimination. Sentinel-2 MSI and Rapid Eye are some of the new generation satellite sensors that are characterized by finer spatial and spectral resolution, including the red edge band. The aim of this study was to evaluate the potential of the red edge band of Sentinel-2 and Rapid Eye, for mapping festuca C3 grass using discriminant analysis and maximum likelihood classification algorithms. Spectral bands, vegetation indices and spectral bands plus vegetation indices were analysed. Results show that the integration of the red edge band improved the festuca C3 grass mapping accuracy by 5.95 and 4.76% for Sentinel-2 and Rapid Eye when the red edge bands were included and excluded in the analysis, respectively. The results demonstrate that the use of sensors with strategically positioned red edge bands, could offer information that is critical for the sustainable rangeland management. Numéro de notice : A2019-301 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1474274 Date de publication en ligne : 24/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1474274 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93221
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1123 - 1143[article]
Titre : Google Earth Engine applications Type de document : Monographie Auteurs : Lalit Kumar, Éditeur scientifique ; Onisimo Mutanga, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 420 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-3-03897-885-5 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] base de données d'images
[Termes IGN] Google Earth Engine
[Termes IGN] image 3D
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] information géographique numérique
[Termes IGN] informatique en nuage
[Termes IGN] moteur de recherche
[Termes IGN] surveillance écologique
[Termes IGN] système d'information environnementale
[Termes IGN] traitement de données localiséesRésumé : (éditeur) In a rapidly changing world, there is an ever-increasing need to monitor the Earth's resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth's surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales. Note de contenu : 1- Google Earth Engine applications since inception: usage, trends, and potential
2- Global estimation of biophysical variables from Google Earth Engine platform
3- An operational before-after-control-impact (BACI) designed platform for vegetation monitoring at planetary scale
4- Mapping vegetation and land use types in Fanjingshan national nature reserve using Google Earth Engine
5- A dynamic Landsat derived Normalized Difference Vegetation Index (NDVI) product for the conterminous United States
6- High spatial resolution visual band imagery outperforms medium resolution spectral imagery for ecosystem assessment in the semi-arid Brazilian Sert˜ao
7- Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016
8- Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian Seas
9- BULC-U: Sharpening resolution and improving accuracy of land-use/land-cover classifications in Google Earth Engine
10- Monitoring the impact of land cover change on surface urban heat island through Google
Earth Engine: Proposal of a global methodology, first applications and problems
11- Regional crop gross primary productivity and yield estimation using fused Landsat-MODIS data
12- The first wetland inventory map of Newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform
13- A cloud-based multi-temporal ensemble classifier to map smallholder farming systems
14- Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine
15- SnowCloudHydro — A new framework for forecasting streamflow in snowy, data-scarce regions
16- Flood prevention and emergency response system powered by Google Earth Engine
17- Leveraging the Google Earth Engine for drought assessment using global soil moisture data
18- Multitemporal cloud masking in the Google Earth Engine
19- Historical and operational monitoring of surface sediments in the lower Mekong basin using Landsat and Google Earth Engine cloud computing
20- Mapping mining areas in the Brazilian Amazon using MSI/Sentinel-2 imagery (2017)
21- Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and Sentinel-2
22- Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potentialNuméro de notice : 25887 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Monographie DOI : 10.3390/books978-3-03897-885-5 En ligne : https://doi.org/10.3390/books978-3-03897-885-5 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95788
Titre : Remote sensing of above ground biomass Type de document : Monographie Auteurs : Lalit Kumar, Auteur ; Onisimo Mutanga, Auteur Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 264 p. ISBN/ISSN/EAN : 978-3-03921-210-1 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] changement climatique
[Termes IGN] coefficient de corrélation
[Termes IGN] données lidar
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] série temporelleRésumé : (Editeur) Above ground biomass has been listed by the Intergovernmental Panel on Climate Change as one of the five most prominent, visible, and dynamic terrestrial carbon pools. The increased awareness of the impacts of climate change has seen a burgeoning need to consistently assess carbon stocks to combat carbon sequestration. An accurate estimation of carbon stocks and an understanding of the carbon sources and sinks can aid the improvement and accuracy of carbon flux models, an important pre-requisite of climate change impact projections. Based on 15 research topics, this book demonstrates the role of remote sensing in quantifying above ground biomass (forest, grass, woodlands) across varying spatial and temporal scales. The innovative application areas of the book include algorithm development and implementation, accuracy assessment, scaling issues (local–regional–global biomass mapping), and the integration of microwaves (i.e. LiDAR), along with optical sensors, forest biomass mapping, rangeland productivity and abundance (grass biomass, density, cover), bush encroachment biomass, and seasonal and long-term biomass monitoring. Numéro de notice : 26325 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03921-210-1 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.3390/books978-3-03921-210-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95159 Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data / Abel Chemura in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)PermalinkEstimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor / Timothy Dube in Geocarto international, vol 33 n° 2 (February 2018)PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)PermalinkStand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)PermalinkDeveloping detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor / Abel Chemura in Geocarto international, vol 32 n° 7 (July 2017)PermalinkProgress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space / Cletah Shoko in ISPRS Journal of photogrammetry and remote sensing, vol 120 (october 2016)PermalinkThe impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)PermalinkOptimizing the spatial resolution of WorldView-2 imagery for discriminating forest vegetation at subspecies level in KwaZulu-Natal, South Africa / Romano Lottering in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)PermalinkOptimising the spatial resolution of WorldView-2 pan-sharpened imagery for predicting levels of Gonipterus scutellatus defoliation in KwaZulu-Natal, South Africa / Romano Lottering in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)PermalinkApplication of topo-edaphic factors and remotely sensed vegetation indices to enhance biomass estimation in a heterogeneous landscape in the Eastern Arc mountains of Tanzania / Mercy Ojoyi in Geocarto international, vol 31 n° 1 - 2 (January - February 2016)Permalink