Détail de l'auteur
Auteur Jonathan Li |
Documents disponibles écrits par cet auteur (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds Type de document : Article/Communication Auteurs : Zhipeng Luo, Auteur ; Di Liu, Auteur ; Jonathan Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 147 - 163 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] balayage laser
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobileRésumé : (Auteur) The representation of 3D data is the key issue for shape analysis. However, most of the existing representations suffer from high computational cost and structure information loss. This paper presents a novel sequential slice representation with an attention-embedding network, named RSSNet, for 3D point cloud recognition and retrieval in road environments. RSSNet has two main branches. Firstly, a sequential slice module is designed to map disordered 3D point clouds to ordered sequence of shallow feature vectors. A gated recurrent unit (GRU) module is applied to encode the spatial and content information of these sequential vectors. The second branch consists of a key-point based graph convolution network (GCN) with an embedding attention strategy to fuse the sequential and global features to refine the structure discriminability. Three datasets were used to evaluate the proposed method, one acquired by our mobile laser scanning (MLS) system and two public datasets (KITTI and Sydney Urban Objects). Experimental results indicated that the proposed method achieved better performance than recognition and retrieval state-of-the-art methods. RSSNet provided recognition rates of 98.08%, 95.77% and 70.83% for the above three datasets, respectively. For the retrieval task, RSSNet obtained excellent mAP values of 95.56%, 87.16% and 69.99% on three datasets, respectively. Numéro de notice : A2020-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.003 Date de publication en ligne : 22/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94582
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 147 - 163[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference Type de document : Article/Communication Auteurs : Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; Wayne A. Sarasua, Auteur ; Jonathan Li, Auteur Année de publication : 2020 Article en page(s) : pp 149 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] autoroute
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de points
[Termes IGN] extraction du réseau routier
[Termes IGN] Inférence floue
[Termes IGN] lidar mobile
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (Auteur) Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned. Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters. After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and transformed back to their original position. The efficiency of the method was tested on two different point cloud datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets. Numéro de notice : A2020-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.009 Date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94558
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 149 - 166[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Learning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
[article]
Titre : Learning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments Type de document : Article/Communication Auteurs : Zhipeng Luo, Auteur ; Jonathan Li, Auteur ; Zhenlong Xiao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 44 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] jointure spatiale
[Termes IGN] objet 3D
[Termes IGN] reconnaissance d'objets
[Termes IGN] représentation multiple
[Termes IGN] réseau neuronal convolutif
[Termes IGN] semis de pointsRésumé : (Auteur) Most existing 3D object recognition methods still suffer from low descriptiveness and weak robustness although remarkable progress has made in 3D computer vision. The major challenge lies in effectively mining high-level 3D shape features. This paper presents a high-level feature learning framework for 3D object recognition through fusing multiple 2D representations of point clouds. The framework has two key components: (1) three discriminative low-level 3D shape descriptors for obtaining multi-view 2D representation of 3D point clouds. These descriptors preserve both local and global spatial relationships of points from different perspectives and build a bridge between 3D point clouds and 2D Convolutional Neural Networks (CNN). (2) A two-stage fusion network, which consists of a deep feature learning module and two fusion modules, for extracting and fusing high-level features. The proposed method was tested on three datasets, one of which is Sydney Urban Objects dataset and the other two were acquired by a mobile laser scanning (MLS) system along urban roads. The results obtained from comprehensive experiments demonstrated that our method is superior to the state-of-the-art methods in descriptiveness, robustness and efficiency. Our method achieves high recognition rates of 94.6%, 93.1% and 74.9% on the above three datasets, respectively. Numéro de notice : A2019-137 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.024 Date de publication en ligne : 16/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.024 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92468
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 44 - 58[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game / Dawei Zai in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game Type de document : Article/Communication Auteurs : Dawei Zai, Auteur ; Jonathan Li, Auteur ; Yulan Guo, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 15 - 29 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] enregistrement de données
[Termes IGN] matrice de covariance
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] théorie des jeuxRésumé : (Auteur) It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework. Numéro de notice : A2017-729 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88426
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 15 - 29[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Semiautomated extraction of street light poles from mobile LiDAR point-clouds / Yongtao Yu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
[article]
Titre : Semiautomated extraction of street light poles from mobile LiDAR point-clouds Type de document : Article/Communication Auteurs : Yongtao Yu, Auteur ; Jonathan Li, Auteur ; Haiyan Guan, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1374 - 1386 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction du réseau routier
[Termes IGN] extraction semi-automatique
[Termes IGN] instrumentation Riegl
[Termes IGN] lidar mobile
[Termes IGN] mobilier urbain
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) This paper proposes a novel algorithm for extracting street light poles from vehicleborne mobile light detection and ranging (LiDAR) point-clouds. First, the algorithm rapidly detects curb-lines and segments a point-cloud into road and nonroad surface points based on trajectory data recorded by the integrated position and orientation system onboard the vehicle. Second, the algorithm accurately extracts street light poles from the segmented nonroad surface points using a novel pairwise 3-D shape context. The proposed algorithm is tested on a set of point-clouds acquired by a RIEGL VMX-450 mobile LiDAR system. The results show that road surfaces are correctly segmented, and street light poles are robustly extracted with a completeness exceeding 99%, a correctness exceeding 97%, and a quality exceeding 96%, thereby demonstrating the efficiency and feasibility of the proposed algorithm to segment road surfaces and extract street light poles from huge volumes of mobile LiDAR point-clouds. Numéro de notice : A2015-140 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2338915 Date de publication en ligne : 05/08/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2338915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75807
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1374 - 1386[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Using mobile laser scanning data for automated extraction of road markings / Haiyan Guan in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)PermalinkSemi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds / Bishen Yang in ISPRS Journal of photogrammetry and remote sensing, vol 79 (May 2013)PermalinkAdvances in mobile mapping technology / C. Vincent Tao (2007)PermalinkA hybrid texture segmentation method for mapping urban land use / Nezamoddin N. Kachouie in Geomatica, vol 58 n° 1 (March 2004)Permalink