Détail de l'auteur
Auteur Xiao Xiang Zhu |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Endmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Endmember bundle extraction based on multiobjective optimization Type de document : Article/Communication Auteurs : Rong Liu, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2021 Article en page(s) : pp 8630 - 8645 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] compensation par faisceaux
[Termes IGN] distribution de Pareto
[Termes IGN] image hyperspectrale
[Termes IGN] modèle linéaire
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) A number of endmember extraction methods have been developed to identify pure pixels in hyperspectral images (HSIs). The majority of them use only one spectrum to represent one kind of material, which ignores the spectral variability problem that particularly characterizes a HSI with high spatial resolution. Only a few algorithms have been developed to identify multiple endmembers representing the spectral variability within each class, called endmember bundle extraction (EBE). This article introduces multiobjective particle swarm optimization for the identification of multiple endmember spectra with variability. Unlike existing convex geometry-based EBE methods, which operate on a single geometry of the dataspace, the proposed method divides the observed data into subsets along the spectral dimension and simultaneously operates on multiple dataspaces to obtain candidate endmembers based on multiobjective particle swarm optimization. The candidate endmembers are then refined by spatial post-processing and sequential forward floating selection to produce the final result. Experiments are conducted on both synthetic and real hyperspectral data to demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art methods. Numéro de notice : A2021-714 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3037249 En ligne : https://doi.org/10.1109/TGRS.2020.3037249 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98621
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8630 - 8645[article]Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network / Chunping Qiu in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network Type de document : Article/Communication Auteurs : Chunping Qiu, Auteur ; Lichao Mou, Auteur ; Michael Schmitt, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 162 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] climat urbain
[Termes IGN] image multitemporelle
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] résidu
[Termes IGN] villeRésumé : (Auteur) The local climate zone (LCZ) scheme was originally proposed to provide an interdisciplinary taxonomy for urban heat island (UHI) studies. In recent years, the scheme has also become a starting point for the development of higher-level products, as the LCZ classes can help provide a generalized understanding of urban structures and land uses. LCZ mapping can therefore theoretically aid in fostering a better understanding of spatio-temporal dynamics of cities on a global scale. However, reliable LCZ maps are not yet available globally. As a first step toward automatic LCZ mapping, this work focuses on LCZ-derived land cover classification, using multi-seasonal Sentinel-2 images. We propose a recurrent residual network (Re-ResNet) architecture that is capable of learning a joint spectral-spatial-temporal feature representation within a unitized framework. To this end, a residual convolutional neural network (ResNet) and a recurrent neural network (RNN) are combined into one end-to-end architecture. The ResNet is able to learn rich spectral-spatial feature representations from single-seasonal imagery, while the RNN can effectively analyze temporal dependencies of multi-seasonal imagery. Cross validations were carried out on a diverse dataset covering seven distinct European cities, and a quantitative analysis of the experimental results revealed that the combined use of the multi-temporal information and Re-ResNet results in an improvement of approximately 7 percent points in overall accuracy. The proposed framework has the potential to produce consistent-quality urban land cover and LCZ maps on a large scale, to support scientific progress in fields such as urban geography and urban climatology. Numéro de notice : A2019-268 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.004 Date de publication en ligne : 14/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93085
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 151 - 162[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery / Lichao Mou in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Lorenzo Bruzzone, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 924 - 935 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image multibande
[Termes IGN] réseau neuronal récurrentRésumé : (Auteur) Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network and a recurrent neural network into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependence in bitemporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) it is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; and 3) it is capable of adaptively learning the temporal dependence between multitemporal images, unlike most of the algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed mode. Numéro de notice : A2019-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2863224 Date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2863224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92449
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 924 - 935[article]Towards automatic SAR-optical stereogrammetry over urban areas using very high resolution imagery / Chunping Qiu in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
[article]
Titre : Towards automatic SAR-optical stereogrammetry over urban areas using very high resolution imagery Type de document : Article/Communication Auteurs : Chunping Qiu, Auteur ; Michael Schmitt, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2018 Article en page(s) : pp 218 - 231 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] couple stéréoscopique
[Termes IGN] géométrie épipolaire
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image TerraSAR-X
[Termes IGN] image Worldview
[Termes IGN] mesure de similitude
[Termes IGN] points homologues
[Termes IGN] précision de localisation
[Termes IGN] reconstruction 3D
[Termes IGN] zone urbaineRésumé : (Auteur) In this paper, we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established hand-crafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Numéro de notice : A2018-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89586
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 218 - 231[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Robust object-based multipass InSAR deformation reconstruction / Jian Kang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Robust object-based multipass InSAR deformation reconstruction Type de document : Article/Communication Auteurs : Jian Kang, Auteur ; Yuanyuan Wang, Auteur ; Marco Körner, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 4239 - 4251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification orientée objet
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] inversion
[Termes IGN] pont
[Termes IGN] surveillance géologique
[Termes IGN] tenseurRésumé : (Auteur) Deformation monitoring by multipass synthetic aperture radar (SAR) interferometry (InSAR) is, so far, the only imaging-based method to assess millimeter-level deformation over large areas from space. Past research mostly focused on the optimal retrieval of deformation parameters on the basis of a single pixel or a pixel cluster. Only until recently, the first demonstration of object-based urban infrastructure monitoring by fusing InSAR and the semantic classification labels derived from optical images was presented by Wang et al. Given such classification labels in the SAR image, we propose a general framework for object-based InSAR parameter retrieval, where the parameters of the whole object are jointly estimated by the inversion of a regularized tensor model instead of pixelwise. Our approach does not assume the stationarity of each sample in the object, which is usually assumed in other pixel cluster-based methods, such as SqueeSAR. In addition, to handle outliers in real data, a robust phase recovery step prior to parameter retrieval is also introduced. In typical settings, the proposed method outperforms the current pixelwise estimators, e.g., periodogram, by a factor of several tens in the accuracy of the linear deformation estimates. Last but not least, for a practical demonstration on bridge monitoring, we present a full workflow of long-term bridge monitoring using the proposed approach. Numéro de notice : A2017-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2684424 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2684424 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86422
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4239 - 4251[article]Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring / Yuanyuan Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)PermalinkThree-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack TerraSAR-X data stacks / Sina Montazeri in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)PermalinkExploiting joint sparsity for pansharpening : the J-SparseFI algorithm / Xiao Xiang Zhu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)PermalinkAutomatic detection and reconstruction of 2-D/3-D building shapes from spaceborne TomoSAR point clouds / Muhammad Shahzad in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)PermalinkGeodetic SAR tomography / Xiao Xiang Zhu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)PermalinkFacade reconstruction using multiview spaceborne TomoSAR point clouds / Xiao Xiang Zhu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 6 Tome 2 (June 2014)PermalinkA sparse image fusion algorithm with application to pan-sharpening / Xiao Xiang Zhu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)Permalink