Détail de l'auteur
Auteur Tiziana Veracini |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Models and methods for automated background density estimation in hyperspectral anomaly detection / Stefania Matteoli in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)
[article]
Titre : Models and methods for automated background density estimation in hyperspectral anomaly detection Type de document : Article/Communication Auteurs : Stefania Matteoli, Auteur ; Tiziana Veracini, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 2837 - 2852 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] automatisation
[Termes IGN] détection d'anomalie
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] prise en compte du contexteRésumé : (Auteur) Anomaly detection (AD) in remotely sensed hyperspectral images has been proven to be valuable in many applications. In this paper, we propose a scheme for detecting global anomalies in which a likelihood ratio test-based decision rule is applied in conjunction with automated data-driven estimation of the background probability density function (PDF). Specifically, the use of both semiparametric (finite mixtures) and nonparametric (Parzen windows) models is investigated for background PDF estimation. Although such approaches are well known in multivariate data analysis, they have been very seldom applied to estimate the hyperspectral image background PDF, mostly due to the difficulty of reliably learning the model parameters without operator intervention. In this paper, semi and nonparametric estimators have been successfully employed to estimate the image background PDF with the aim of detecting global anomalies in a scene benefiting from the application of ad hoc Bayesian learning strategies. Two real hyperspectral images have been used to experimentally evaluate the ability of the proposed AD scheme resulting from the application of different global background PDF models and learning methods. Numéro de notice : A2013-260 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2214392 En ligne : https://doi.org/10.1109/TGRS.2012.2214392 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32398
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 5 Tome 1 (May 2013) . - pp 2837 - 2852[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013051A RAB Revue Centre de documentation En réserve L003 Disponible