Détail de l'auteur
Auteur Daniele Cerra |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A classification algorithm for hyperspectral images based on synergetics theory / Daniele Cerra in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)
[article]
Titre : A classification algorithm for hyperspectral images based on synergetics theory Type de document : Article/Communication Auteurs : Daniele Cerra, Auteur ; Rupert Müller, Auteur ; Peter Reinartz, Auteur Année de publication : 2013 Article en page(s) : pp 2887 - 2898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] classification
[Termes IGN] image hyperspectraleRésumé : (Auteur) This paper presents a classification methodology for hyperspectral data based on synergetics theory. Pattern recognition algorithms based on synergetics have been applied to images in the spatial domain with limited success in the past, given their dependence on the rotation, shifting, and scaling of the images. These drawbacks can be discarded if such methods are applied to data acquired by a hyperspectral sensor in the spectral domain, as each single spectrum, related to an image element in the hyperspectral scene, can be analyzed independently. The spectrum is first projected in a space spanned by a set of user-defined prototype vectors, which belong to some classes of interest, and then attracted by a final state associated to a prototype. The spectrum can thus be classified, establishing a first attempt at performing a pixel-wise image classification using notions derived from synergetics. As typical synergetics-based systems have the drawback of a rigid training step, we introduce a new procedure which allows the selection of a training area for each class of interest, used to weight the prototype vectors through attention parameters and to produce a more accurate classification map through plurality vote of independent classifications. As each classification is in principle obtained on the basis of a single training sample per class, the proposed technique could be particularly effective in tasks where only a small training data set is available. The results presented are promising and often outperform state-of-the-art classification methodologies, both general and specific to hyperspectral data. Numéro de notice : A2013-269 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2219059 En ligne : https://doi.org/10.1109/TGRS.2012.2219059 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32407
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 5 Tome 1 (May 2013) . - pp 2887 - 2898[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013051A RAB Revue Centre de documentation En réserve L003 Disponible