Détail de l'auteur
Auteur Bo Yu |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Graph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica, vol 26 n° 2 (April 2022)
[article]
Titre : Graph neural network based model for multi-behavior session-based recommendation Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Ruoqian Zhang, Auteur ; Wei Chen, Auteur ; Junhua Fang, Auteur Année de publication : 2022 Article en page(s) : pp 429 - 447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] comportement
[Termes IGN] consommation
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] service fondé sur la positionMots-clés libres : session Résumé : (auteur) Multi-behavior session-based recommendation aims to predict the next item, such as a location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g., buy or click) in a session involving multiple types of behaviors. State-of-the-art methods generally model multi-behavior dependencies in item-level, but ignore the potential of discovering useful patterns of multi-behavior transition through feature-level representation learning. Besides, sequential and non-sequential patterns should be properly fused in session modeling to capture dynamic interests within the session. To this end, this paper proposes a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper representations of multi-behavior interaction sequences for session-based recommendation. Specifically, we first construct multi-relational item graph (MRIG) and feature graph (MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes advantage of GNN to capture item and feature representations, such that global item-to-item and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior session is modeled by a seamless fusion of interacted item and feature representations, where self-attention and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously. Experiments on two real datasets show that the GNNH model significantly outperforms the state-of-the-art methods. Numéro de notice : A2022-326 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00439-w Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.1007/s10707-021-00439-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100489
in Geoinformatica > vol 26 n° 2 (April 2022) . - pp 429 - 447[article]MSegnet, a practical network for building detection from high spatial resolution images / Bo Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
[article]
Titre : MSegnet, a practical network for building detection from high spatial resolution images Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Fang Chen, Auteur ; Ying Dong, Auteur Année de publication : 2021 Article en page(s) : pp 901 - 906 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] matrice
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Building detection in big earth data by remote sensing is crucial for urban development. However, improving its accuracy remains challenging due to complicated background objects and different viewing angles from various remotely sensed images. The hereto proposed methods predominantly focus on multi-scale feature learning, which omits features in multiple aspect ratios. Moreover, postprocessing is required to refine the segmentation performance. We propose modified semantic segmentation (MSegnet), a single-shot semantic segmentation model based on a matrix of convolution layers to extract features in multiple scales and aspect ratios. MSegnet consists of two modules: backbone feature learning and matrix convolution to conduct vertical and horizontal learning. The matrix convolution comprises a set of convolution operations with different aspect ratios. MSegnet is applied to a public building data set that is widely used for evaluation and shown to achieve satisfactory accuracy, compared with the published single-shot methods. Numéro de notice : A2021-898 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00016R2 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.14358/PERS.21-00016R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99296
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 12 (December 2021) . - pp 901 - 906[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021121 SL Revue Centre de documentation Revues en salle Disponible A simple but effective landslide detection method based on image saliency / Bo Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 5 (May 2017)
[article]
Titre : A simple but effective landslide detection method based on image saliency Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Fang Chen, Auteur ; Muhammad Shakir, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 351 - 363 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection de changement
[Termes IGN] effondrement de terrain
[Termes IGN] extraction du relief
[Termes IGN] relief
[Termes IGN] risque naturelRésumé : (auteur) Effective large-scale landslide mapping is becoming significantly important for analyzing natural hazards and providing landslide locations rapidly for emergency response. Change detection and machine learning methods are commonly used for landslide detection. Change detection mostly relies on several experienced parameters that users have to tune for different images, which limits the practical application. The training machine learning model consumes much time, and it is limited to specific imaging conditions. In this paper, a simple method for landslide detection using a fixed parameter by calculating image saliency is proposed. Landslide is detected as a saliency object within the background of vegetation and bare rocks. It is fast and robust for the experimental images, and outperforms the state-of-the-art, semi-automatic method in terms of accuracy and computing time. Given the high efficiency and robustness of the proposed method, it is applicable to practical cases for hazard estimation. Numéro de notice : A2017-190 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.5.351 En ligne : https://doi.org/10.14358/PERS.83.5.351 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84800
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 5 (May 2017) . - pp 351 - 363[article]An effective morphological index in automatic recognition of built-up area suitable for high spatial resolution images as ALOS and SPOT data / Bo Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 6 (June 2014)
[article]
Titre : An effective morphological index in automatic recognition of built-up area suitable for high spatial resolution images as ALOS and SPOT data Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Li Wang, Auteur ; Zheng Niu, Auteur ; Muhammad Shakir, Auteur Année de publication : 2014 Article en page(s) : pp 529 - 536 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection du bâti
[Termes IGN] image ALOS
[Termes IGN] image SPOT
[Termes IGN] indice de détection
[Termes IGN] morphologie mathématique
[Termes IGN] Normalized Difference Vegetation IndexRésumé : (Auteur) Building detection from remote sensed images is the main technique to monitor economic or environmental development of an area. Advanced Land Observing Satellite (alos) and SPOT data are reliable sources due to the limitation of weather, position, time, and other practical reasons. However, to the best of our knowledge, algorithms proposed in the identification of buildings mostly aim only at images with very high spatial resolution or high spectral resolution. There are few algorithms for detecting buildings from ALOS and SPOT data. A built-up detection index (BDI) is proposed in this paper to automatically identify buildings from images with 10 meters resolution. It synthesizes morphological theory and normalized differential vegetation index (NDVl) to enhance buildings by suppressing vegetation. Four images of ALOS and SPOT are used to verify the efficiency, stability and accuracy of BDI. Experiments show that BDI is suitable to detect buildings from 10 meters resolution with reliable accuracy. Numéro de notice : A2014-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.80.6.529-536 En ligne : https://doi.org/10.14358/PERS.80.6.529-536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33195
in Photogrammetric Engineering & Remote Sensing, PERS > vol 80 n° 6 (June 2014) . - pp 529 - 536[article]Modeling and communicating the conceptual intent of geo-analytical tasks for human-GIS interaction / G. Cai in Transactions in GIS, vol 17 n° 3 (June 2013)
[article]
Titre : Modeling and communicating the conceptual intent of geo-analytical tasks for human-GIS interaction Type de document : Article/Communication Auteurs : G. Cai, Auteur ; Bo Yu, Auteur ; Dong Chen, Auteur Année de publication : 2013 Article en page(s) : pp 353 - 368 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] analyse spatiale
[Termes IGN] ArcGIS Desktop
[Termes IGN] interactivité
[Termes IGN] interface utilisateur
[Termes IGN] modélisation spatiale
[Termes IGN] raisonnement spatial
[Termes IGN] système d'information géographiqueRésumé : (Auteur) One of the fundamental issues of geographical information science is to design GIS interfaces and functionalities in a way that is easy to understand, teach, and use. Unfortunately, current geographical information systems (including ArcGIS) remains very difficult to use as spatial analysis tools, because they organize and expose functionalities according to GIS data structures and processing algorithms. As a result, GIS interfaces are conceptually confusing, cognitively complex, and semantically disconnected from the way human reason about spatial analytical activities. In this article, we propose an approach that structures GIS analytical functions based on the notion of “analytical intent”. We describe an experiment that replaces ArcGIS desktop interface with a conversational interface, to enable mixed-initiative user-system interactions at the level of analytical intentions. We initially focus on the subset of GIS functions that are relevant to “finding what's inside” as described by Mitchell, but the general principles apply to other types of spatial analysis. This work demonstrates the feasibility of delegating some spatial thinking tasks to computational agents, and also raises future research questions that are key to building a better theory of spatial thinking with GIS. Numéro de notice : A2013-288 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12040 Date de publication en ligne : 28/05/2013 En ligne : https://doi.org/10.1111/tgis.12040 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32426
in Transactions in GIS > vol 17 n° 3 (June 2013) . - pp 353 - 368[article]