Détail de l'auteur
Auteur Cameron Proctor |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Texture augmented detection of macrophyte species using decision trees / Cameron Proctor in ISPRS Journal of photogrammetry and remote sensing, vol 80 (June 2013)
[article]
Titre : Texture augmented detection of macrophyte species using decision trees Type de document : Article/Communication Auteurs : Cameron Proctor, Auteur ; Yuhong He, Auteur ; Vincent Robinson, Auteur Année de publication : 2013 Article en page(s) : pp 10 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algue
[Termes IGN] classification par arbre de décision
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] macrophyte
[Termes IGN] précision de la classification
[Termes IGN] rivière
[Termes IGN] séparabilité
[Termes IGN] texture d'imageRésumé : (Auteur) Image classification using multispectral sensors has shown good performance in detecting macrophytes at the species level. However, species level classification often does not utilize the texture information provided by high resolution images. This study investigated whether image texture provides useful vector(s) for the discrimination of monospecific stands of three floating macrophyte species in Quickbird imagery of the South Nation River. Semivariograms indicated that window sizes of 5 x 5 and 13 x 13 pixels were the most appropriate spatial scales for calculation of the grey level co-occurrence matrix and subsequent texture attributes from the multispectral and panchromatic bands. Of the 214 investigated vectors (13 Haralick texture attributes * 15 bands + 9 spectral bands + 10 transformations/indices), feature selection determined which combination of spectral and textural vectors had the greatest class separability based on the Mann–Whitney U-test and Jefferies–Matusita distance. While multispectral red and near infrared (NIR) performed satisfactorily, the addition of panchromatic-dissimilarity slightly improved class separability and the accuracy of a decision tree classifier (Kappa: red/NIR/panchromatic-dissimilarity – 93.2% versus red/NIR – 90.4%). Class separability improved by incorporating a second texture attribute, but resulted in a decrease in classification accuracy. The results suggest that incorporating image texture may be beneficial for separating stands with high spatial heterogeneity. However, the benefits may be limited and must be weighed against the increased complexity of the classifier. Numéro de notice : A2013-295 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.02.022 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.02.022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32433
in ISPRS Journal of photogrammetry and remote sensing > vol 80 (June 2013) . - pp 10 - 20[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013061 RAB Revue Centre de documentation En réserve L003 Disponible