Détail de l'auteur
Auteur Farhad Samadzadegan |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] analyse de variance
[Termes IGN] fusion d'images
[Termes IGN] image Kompsat
[Termes IGN] image à haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Pléiades-HR
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] netteté
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Toward optimum fusion of thermal hyperspectral and visible images in classification of urban area / Farhad Samadzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 4 (April 2017)
[article]
Titre : Toward optimum fusion of thermal hyperspectral and visible images in classification of urban area Type de document : Article/Communication Auteurs : Farhad Samadzadegan, Auteur ; Hadiseh Hasani, Auteur ; Peter Reinartz, Auteur Année de publication : 2017 Article en page(s) : pp 269 - 280 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande visible
[Termes IGN] bati
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] fusion d'images
[Termes IGN] géostatistique
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] indice de végétation
[Termes IGN] morphologie
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] zone urbaineRésumé : (Auteur) Recently, classification of urban area based on multi-sensor fusion has been widely investigated. In this paper, the potential of using visible (VIS) and thermal infrared (TIR) hyperspectral images fusion for classification of urban area is evaluated. For this purpose, comprehensive spatial-spectral feature space is generated which includes vegetation index, differential morphological profile (DMP), attribute profile (AP), texture, geostatistical features, structural feature set (SFS) and local statistical descriptors from both datasets in addition to original datasets. Although Support Vector Machine (SVM) is an appropriate tool in the classification of high dimensional feature space, its performance is significantly affected by its parameters and feature space. Cuckoo search (CS) optimization algorithm with mixed binary-continuous coding is proposed for feature selection and SVM parameter determination simultaneously. Moreover, the significance of each selected feature category in the classification of a specific object is verified. Accuracy assessment on two subsets shows that stacking of VIS and TIR bands can improve the classification performance to 87 percent and 82 percent for two subsets, compare to VIS image (72 percent and 80 percent) and TIR image (50 percent and 56 percent). However, the optimum results obtained based on the proposed method which gains 94 percent and 92 percent. Furthermore, results show that using TIR beside VIS image improves classification accuracy of roads and buildings in urban area. Numéro de notice : A2017-111 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.4.269 En ligne : https://doi.org/10.14358/PERS.83.4.269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84589
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 4 (April 2017) . - pp 269 - 280[article]Multi-agent recognition system based on object based image analysis using WorldView-2 / Fatemeh Tabib Mahmoudi in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 2 (February 2014)
[article]
Titre : Multi-agent recognition system based on object based image analysis using WorldView-2 Type de document : Article/Communication Auteurs : Fatemeh Tabib Mahmoudi, Auteur ; Farhad Samadzadegan, Auteur ; Peter Reinartz, Auteur Année de publication : 2014 Article en page(s) : pp 161 - 170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification à base de connaissances
[Termes IGN] détection de régions
[Termes IGN] image Worldview
[Termes IGN] reconnaissance d'objets
[Termes IGN] système multi-agents
[Termes IGN] zone urbaine denseRésumé : (Auteur) In this paper, using spatial and spectral characteristics of the WorldView-2 satellite imagery, capabilities of multi-agent systems are used for solving multiple object recognition difficulties in complex urban areas. The methodology has two main steps: object based image analysis (OBIA) and multi-agent object recognition. In the first step, segmentation and multi-process object classification based on spectral, textura, and structural features are performed. Classified regions are used as an input dataset in the multi-agent system in order to modify object recognition results. According to the results from the object based image analysis process, using contextual relations and structural features, the overall accuracy and Kappa improved by 17.79 percent and 0.253, respectively. Using knowledge-based reasoning and cooperative capabilities of agents in the multi-agent system in this paper most of the remaining difficulties are decreased and values 90.95 percent and 0.876 are obtained for the overall accuracy and Kappa, respectively, of the object recognition results. Numéro de notice : A2014-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.80.2.161-170 En ligne : https://doi.org/10.14358/PERS.80.2.161-170 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33014
in Photogrammetric Engineering & Remote Sensing, PERS > vol 80 n° 2 (February 2014) . - pp 161 - 170[article]Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery / Behnaz Bigdeli in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 6 (June 2013)
[article]
Titre : Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery Type de document : Article/Communication Auteurs : Behnaz Bigdeli, Auteur ; Farhad Samadzadegan, Auteur ; Peter Reinartz, Auteur Année de publication : 2013 Article en page(s) : pp 523 - 533 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] regroupement de donnéesRésumé : (Auteur) Due to the dense sampling of spectral signatures of land covers, hyperspectral images have a better discrimination among similar ground cover classes than traditional remote sensing data. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral image classification. In addition, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon. Consequently, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifiers in these situations, classifier ensemble system may exhibit better performance. This paper presents a method for classification of hyperspectral data based on two concepts of Band Clustering (BC) and Band Grouping [eg] through a Support Vector machine (SVM) ensemble system. The proposed method uses the BC\BG strategies to split data into few band portions. After this step, we applied SVM on each band cluster\group that is produced in previous step. Finally, Naive Bayes as a classifier fusion method combines the decisions of SVM classifiers. Experimental results show that the proposed method improves the classification accuracy in comparison to the standard SVM and to feature selection methods. Numéro de notice : A2013-362 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.6.523 En ligne : https://doi.org/10.14358/PERS.79.6.523 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32500
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 6 (June 2013) . - pp 523 - 533[article]