Détail de l'auteur
Auteur Abdesselam Bouzerdoum |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Variational bayesian compressive multipolarization indoor radar imaging / Van Ha Tang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
[article]
Titre : Variational bayesian compressive multipolarization indoor radar imaging Type de document : Article/Communication Auteurs : Van Ha Tang, Auteur ; Abdesselam Bouzerdoum, Auteur ; Son Lam Phung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7459 - 7474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition comprimée
[Termes IGN] détection à travers-le-mur
[Termes IGN] estimation bayesienne
[Termes IGN] fouillis d'échos
[Termes IGN] image radar
[Termes IGN] inférence statistique
[Termes IGN] modèle stochastique
[Termes IGN] polarisation
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction d'imageRésumé : (auteur) This article introduces a probabilistic Bayesian model for addressing the problem of compressive multipolarization through-wall radar imaging (TWRI). The proposed approach formulates the task of wall-clutter mitigation and multipolarization image reconstruction as a Bayesian inference problem for a joint distribution between observed radar measurements and latent wall-clutter matrix and indoor target images. The joint probability distribution incorporates three prior beliefs: low-dimensional structure of the wall reflections, group sparsity structure of the target images, and joint sparsity among the polarization images. These signal attributes are modeled through hierarchical priors, whose parameters and hyperparameters are treated with a full Bayesian formulation. Furthermore, this article presents a variational Bayesian inference algorithm that estimates wall-clutter and multipolarization images as posterior distributions and optimizes the model parameters and hyperparameters simultaneously. Experimental results on simulated and real radar data show that the proposed model is very effective at removing wall clutter and enhancing target localization even when the radar measurements are significantly reduced. Numéro de notice : A2021-647 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051955 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98354
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7459 - 7474[article]Sparse representation of GPR traces with application to signal classification / Wenbin Shao in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
[article]
Titre : Sparse representation of GPR traces with application to signal classification Type de document : Article/Communication Auteurs : Wenbin Shao, Auteur ; Abdesselam Bouzerdoum, Auteur ; Son Lam Phung, Auteur Année de publication : 2013 Article en page(s) : pp 3922 - 3930 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] écho radar
[Termes IGN] filtre de Gabor
[Termes IGN] radar pénétrant GPRRésumé : (Auteur) Sparse representation (SR) models a signal with a small number of elementary waves using an overcomplete dictionary. It has been employed for a wide range of signal and image processing applications, including denoising, deblurring, and compression. In this paper, we present an adaptive SR method for modeling and classifying ground penetrating radar (GPR) signals. The proposed method decomposes each GPR trace into elementary waves using an adaptive Gabor dictionary. The sparse decomposition is used to extract salient features for SR and classification of GPR signals. Experimental results on real-world data show that the proposed sparse decomposition achieves efficient signal representation and yields discriminative features for pattern classification. Numéro de notice : A2013-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2228660 En ligne : https://doi.org/10.1109/TGRS.2012.2228660 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32508
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 7 Tome 1 (July 2013) . - pp 3922 - 3930[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013071A RAB Revue Centre de documentation En réserve L003 Disponible