Détail de l'auteur
Auteur Shizhe Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
[article]
Titre : Spectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery Type de document : Article/Communication Auteurs : Yanfeng Gu, Auteur ; Shizhe Wang, Auteur ; Xiuping Jia, Auteur Année de publication : 2013 Article en page(s) : pp 3968 - 3981 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espace de Hilbert
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectraleRésumé : (Auteur) In this paper, we address a spectral unmixing problem for hyperspectral images by introducing multiple-kernel learning (MKL) coupled with support vector machines. To effectively solve issues of spectral unmixing, an MKL method is explored to build new boundaries and distances between classes in multiple-kernel Hilbert space (MKHS). Integrating reproducing kernel Hilbert spaces (RKHSs) spanned by a series of different basis kernels in MKHS is able to provide increased power in handling general nonlinear problems than traditional single-kernel learning in RKHS. The proposed method is developed to solve multiclass unmixing problems. To validate the proposed MKL-based algorithm, both synthetic data and real hyperspectral image data were used in our experiments. The experimental results demonstrate that the proposed algorithm has a strong ability to capture interclass spectral differences and improve unmixing accuracy, compared to the state-of-the-art algorithms tested. Numéro de notice : A2013-371 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2227757 En ligne : https://doi.org/10.1109/TGRS.2012.2227757 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32509
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 7 Tome 1 (July 2013) . - pp 3968 - 3981[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013071A RAB Revue Centre de documentation En réserve L003 Disponible