Détail de l'auteur
Auteur Xiuping Jia |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Adaptive edge preserving maps in Markov random fields for hyperspectral image classification Type de document : Article/Communication Auteurs : Chao Pan, Auteur ; Xiuping Jia, Auteur ; Jie Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8568 - 8583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation de contours
[Termes IGN] algorithme Graph-Cut
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classe d'objets
[Termes IGN] détection de contours
[Termes IGN] étiquette de classe
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (auteur) This article presents a novel adaptive edge preserving (aEP) scheme in Markov random fields (MRFs) for hyperspectral image (HSI) classification. MRF regularization usually suffered from over-smoothing at boundaries and insufficient refinement within class objects. This work divides and conquers this problem class-by-class, and integrates K ( K−1 )/2 ( K is the class number) aEP maps (aEPMs) in MRF model. Spatial label dependence measure (SLDM) is designed to estimate the interpixel label dependence for given spectral similarity measure. For each class pair, aEPM is optimized by maximizing the difference between intraclass and interclass SLDM. Then, aEPMs are integrated with multilevel logistic (MLL) model to regularize the raw pixelwise labeling obtained by spectral and spectral–spatial methods, respectively. The graph-cuts-based α β -swap algorithm is modified to optimize the designed energy function. Moreover, to evaluate the final refined results at edges and small details thoroughly, segmentation evaluation metrics are introduced. Experiments conducted on real HSI data denote the superiority of aEPMs in evaluation metrics and region consistency, especially in detail preservation. Numéro de notice : A2021-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3035642 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3035642 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98618
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8568 - 8583[article]Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
[article]
Titre : Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Chao Niu, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] atténuation
[Termes IGN] correction atmosphérique
[Termes IGN] distorsion du signal
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image hyperspectrale
[Termes IGN] mine
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] mosaïquage d'images
[Termes IGN] radiance
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] Short Waves InfraRed
[Termes IGN] spectroradiométrie
[Termes IGN] surveillance écologiqueRésumé : (auteur) Airborne hyperspectral remote sensing is an important application in the ecological monitoring of the environment in mining areas, and accurate preprocessing of the original images is the key to quantitative information retrieval. The original image data need radiation correction to acquire surface reflectance data. Due to the impact of the field angle, incidental radiance, and the bidirectional reflectance distribution function (BRDF), there can be a brightness gradient between adjacent strips, which leads to radiance difference and obvious chromatic aberration of the mosaicked images. We propose a novel data correction method for seamless mosaicking of airborne hyperspectral images. Firstly, visible and near-infrared (VNIR) and shortwave infrared (SWIR) sensors are calibrated in the laboratory, and the radiation calibration model of the sensor is established by an integrating-sphere system. A correction function is then established by combining the BRDF effect and the radiation attenuation coefficients. We also normalize the exposure time, sun altitude angle, and sensor altitude angle according to the flight strip. The results showed that this method is able to eliminate the signal distortion, allowing the seamless mosaicking of 37 strip images which were taken in different date and conditions in the study area. After the atmospheric correction of the imagery was completed, the accuracy of the preprocessing results was evaluated by field-measured ASD spectroradiometer data. The coefficient of determination R2 of the results for the reflectance was greater than 0.9. The experiments show that the proposed method has a good performance in radiation accuracy, and can provide high-quality hyperspectral data for the follow-up application of the ecological monitoring of a mining area. Numéro de notice : A2020-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.022 Date de publication en ligne : 16/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95092
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 1 - 15[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Conditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : Conditional random field and deep feature learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Fahim Irfan Alam, Auteur ; Jun Zhou, Auteur ; Alan Wee-Chung Liew, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1612 - 1628 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multibande
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] voxelRésumé : (Auteur) Image classification is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, a convolutional neural network (CNN) has established itself as a powerful model in classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the classification performance. In this paper, we propose a method to classify hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral band groups to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of 3-D data cubes. Furthermore, we introduce a deep deconvolution network that improves the final classification performance. We also introduced a new data set and experimented our proposed method on it along with several widely adopted benchmark data sets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method. Numéro de notice : A2019-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867679 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92461
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1612 - 1628[article]Superpixel-based multitask learning framework for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Superpixel-based multitask learning framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Bin Deng, Auteur ; Jiasong Zhu, Auteur ; Xiuping Jia, Auteur Année de publication : 2017 Article en page(s) : pp 2575 - 2588 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectraleRésumé : (Auteur) Due to the high spectral dimensionality of hyperspectral images as well as the difficult and time-consuming process of collecting sufficient labeled samples in practice, the small sample size scenario is one crucial problem and a challenging issue for hyperspectral image classification. Fortunately, the structure information of materials, reflecting region of homogeneity in the spatial domain, offers an invaluable complement to the spectral information. Assuming some spatial regularity and locality of surface materials, it is reasonable to segment the image into different homogeneous parts in advance, called superpixel, which can be used to improve the classification performance. In this paper, a superpixel-based multitask learning framework has been proposed for hyperspectral image classification. Specifically, a set of 2-D Gabor filters are first applied to hyperspectral images to extract discriminative features. Meanwhile, a superpixel map is generated from the hyperspectral images. Second, a superpixel-based spatial-spectral Schroedinger eigenmaps (S4E) method is adopted to effectively reduce the dimensions of each extracted Gabor cube. Finally, the classification is carried out by a support vector machine (SVM)-based multitask learning framework. The proposed approach is thus termed Gabor S4E and SVM-based multitask learning (GS4E-MTLSVM). A series of experiments is conducted on three real hyperspectral image data sets to demonstrate the effectiveness of the proposed GS4E-MTLSVM approach. The experimental results show that the performance of the proposed GS4E-MTLSVM is better than those of several state-of-the-art methods, while the computational complexity has been greatly reduced, compared with the pixel-based spatial-spectral Schroedinger eigenmaps method. Numéro de notice : A2017-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2647815 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2647815 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86389
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2575 - 2588[article]Class-specific sparse multiple kernel learning for spectral–spatial hyperspectral image classification / Tianzhu Liu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
[article]
Titre : Class-specific sparse multiple kernel learning for spectral–spatial hyperspectral image classification Type de document : Article/Communication Auteurs : Tianzhu Liu, Auteur ; Yanfeng Gu, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 7351 - 7365 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) In recent years, many studies on hyperspectral image classification have shown that using multiple features can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL) can conveniently be embedded in a variety of characteristics. This paper proposes a class-specific sparse MKL (CS-SMKL) framework to improve the capability of hyperspectral image classification. In terms of the features, extended multiattribute profiles are adopted because it can effectively represent the spatial and spectral information of hyperspectral images. CS-SMKL classifies the hyperspectral images, simultaneously learns class-specific significant features, and selects class-specific weights. Using an L1-norm constraint (i.e., group lasso) as the regularizer, we can enforce the sparsity at the group/feature level and automatically learn a compact feature set for the classification of any two classes. More precisely, our CS-SMKL determines the associated weights of optimal base kernels for any two classes and results in improved classification performances. The advantage of the proposed method is that only the features useful for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on three hyperspectral data sets. The experimental results show that the proposed method achieves better performances for hyperspectral image classification compared with several state-of-the-art algorithms, and the results confirm the capability of the method in selecting the useful features. Numéro de notice : A2016-932 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2600522 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2600522 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83346
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 12 (December 2016) . - pp 7351 - 7365[article]Thin cloud removal based on signal transmission principles and spectral mixture analysis / Meng Xu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)PermalinkSuperpixel-based graphical model for remote sensing image mapping / Guangyun Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 11 (November 2015)PermalinkA novel MKL model of integrating LiDAR data and MSI for urban area classification / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)PermalinkOn spectral unmixing resolution using extended support vector machines / Xiaofeng Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)PermalinkSpectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)PermalinkSampling approaches for one-pass land-use/land-cover change mapping / Zhi Huang in International Journal of Remote Sensing IJRS, vol 31 n° 6 (March 2010)PermalinkA patch-based image classification by integrating hyperspectral data with GIS / B. Zhang in International Journal of Remote Sensing IJRS, vol 27 n°15-16 (August 2006)Permalink