Détail de l'auteur
Auteur Xiaoqiang Lu |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Nonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : Nonlocal graph convolutional networks for hyperspectral image classification Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Xiaoqiang Lu, Auteur ; Xuelong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8246 - 8257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] entropie
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal récurrentRésumé : (auteur) Over the past few years making use of deep networks, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), classifying hyperspectral images has progressed significantly and gained increasing attention. In spite of being successful, these networks need an adequate supply of labeled training instances for supervised learning, which, however, is quite costly to collect. On the other hand, unlabeled data can be accessed in almost arbitrary amounts. Hence it would be conceptually of great interest to explore networks that are able to exploit labeled and unlabeled data simultaneously for hyperspectral image classification. In this article, we propose a novel graph-based semisupervised network called nonlocal graph convolutional network (nonlocal GCN). Unlike existing CNNs and RNNs that receive pixels or patches of a hyperspectral image as inputs, this network takes the whole image (including both labeled and unlabeled data) in. More specifically, a nonlocal graph is first calculated. Given this graph representation, a couple of graph convolutional layers are used to extract features. Finally, the semisupervised learning of the network is done by using a cross-entropy error over all labeled instances. Note that the nonlocal GCN is end-to-end trainable. We demonstrate in extensive experiments that compared with state-of-the-art spectral classifiers and spectral–spatial classification networks, the nonlocal GCN is able to offer competitive results and high-quality classification maps (with fine boundaries and without noisy scattered points of misclassification). Numéro de notice : A2020-739 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973363 Date de publication en ligne : 12/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973363 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96365
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8246 - 8257[article]Remote sensing scene classification by unsupervised representation learning / Xiaoqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
[article]
Titre : Remote sensing scene classification by unsupervised representation learning Type de document : Article/Communication Auteurs : Xiaoqiang Lu, Auteur ; Xiangtao Zheng, Auteur ; Yuan Yuan, Auteur Année de publication : 2017 Article en page(s) : pp 5148 - 5157 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déconvolution
[Termes IGN] image à haute résolution
[Termes IGN] réseau neuronal artificiel
[Termes IGN] scène
[Termes IGN] Sydney (Nouvelle-Galles du Sud)Résumé : (Auteur) With the rapid development of the satellite sensor technology, high spatial resolution remote sensing (HSR) data have attracted extensive attention in military and civilian applications. In order to make full use of these data, remote sensing scene classification becomes an important and necessary precedent task. In this paper, an unsupervised representation learning method is proposed to investigate deconvolution networks for remote sensing scene classification. First, a shallow weighted deconvolution network is utilized to learn a set of feature maps and filters for each image by minimizing the reconstruction error between the input image and the convolution result. The learned feature maps can capture the abundant edge and texture information of high spatial resolution images, which is definitely important for remote sensing images. After that, the spatial pyramid model (SPM) is used to aggregate features at different scales to maintain the spatial layout of HSR image scene. A discriminative representation for HSR image is obtained by combining the proposed weighted deconvolution model and SPM. Finally, the representation vector is input into a support vector machine to finish classification. We apply our method on two challenging HSR image data sets: the UCMerced data set with 21 scene categories and the Sydney data set with seven land-use categories. All the experimental results achieved by the proposed method outperform most state of the arts, which demonstrates the effectiveness of the proposed method. Numéro de notice : A2017-664 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2702596 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2702596 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87103
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 9 (September 2017) . - pp 5148 - 5157[article]Spectral–spatial kernel regularized for hyperspectral image denoising full text / Yuan Yuan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Spectral–spatial kernel regularized for hyperspectral image denoising full text Type de document : Article/Communication Auteurs : Yuan Yuan, Auteur ; Xianngtao Zheng, Auteur ; Xiaoqiang Lu, Auteur Année de publication : 2015 Article en page(s) : pp 3815 - 3832 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] filtre adaptatif
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Noise contamination is a ubiquitous problem in hyperspectral images (HSIs), which is a challenging and promising theme in many remote sensing applications. A large number of methods have been proposed to remove noise. Unfortunately, most denoising methods fail to take full advantages of the high spectral correlation and to simultaneously consider the specific noise distributions in HSIs. Recently, a spectral-spatial adaptive hyperspectral total variation (SSAHTV) was proposed and obtained promising results. However, the SSAHTV model is insensitive to the image details, which makes the edges blur. To overcome all of these drawbacks, a spectral-spatial kernel method for HSI denoising is proposed in this paper. The proposed method is inspired by the observation that the spectral-spatial information is highly redundant in HSIs, which is sufficient to estimate the clear images. In this paper, a spectral-spatial kernel regularization is proposed to maintain the spectral correlations in spectral dimension and to match the original structure between two spatial dimensions. Moreover, an adaptive mechanism is developed to balance the fidelity term according to different noise distributions in each band. Therefore, it cannot only suppress noise in the high-noise band but also preserve information in the low-noise band. The reliability of the proposed method in removing noise is experimentally proved on both simulated data and real data. Numéro de notice : A2015-318 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2385082 En ligne : https://doi.org/10.1109/TGRS.2014.2385082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76569
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3815 - 3832[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Substance dependence constrained sparse NMF for hyperspectral unmixing / Yuan Yuan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)
[article]
Titre : Substance dependence constrained sparse NMF for hyperspectral unmixing Type de document : Article/Communication Auteurs : Yuan Yuan, Auteur ; Min Fu, Auteur ; Xiaoqiang Lu, Auteur Année de publication : 2015 Article en page(s) : pp 2975 - 2986 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification barycentrique
[Termes IGN] état de l'art
[Termes IGN] factorisation
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] matrice creuseRésumé : (Auteur) Hyperspectral unmixing is one of the most important problems in analyzing remote sensing images, which aims to decompose a mixed pixel into a collection of constituent materials named endmembers and their corresponding fractional abundances. Recently, various methods have been proposed to incorporate sparse constraints into hyperspectral unmixing and achieve advanced performance. However, most of them ignore the complex distribution of substances in hyperspectral data so that they are only effective in limited cases. In this paper, the concept of substance dependence is introduced to help hyperspectral unmixing. Generally, substance dependence can be considered in a local region by K-nearest neighbors method. However, since substances of hyperspectral images are complicatedly distributed, number K of the most similar substances to each substance is difficult to decide. In this case, substance dependence should be considered in the whole data space, and the number of the K most similar substances to each substance can be adaptively determined by searching from the whole space. Through maintaining the substance dependence during unmixing, the abundances resulted from the proposed method are closer to the real fractions, which lead to better unmixing performance. The following contributions can be summarized. 1) The concept of substance dependence is proposed to describe the complicated relationship between substances in the hyperspectral image. 2) We propose substance dependence constrained sparse nonnegative matrix factorization (SDSNMF) for hyperspectral unmixing. Using SDSNMF, we meet or exceed state-of-the-art unmixing performance. 3) Adequate experiments on both synthetic and real hyperspectral data have been tested. Compared with the state-of-the-art methods, the experimental results prove the superiority of the proposed method. Numéro de notice : A2015-280 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2365953 Date de publication en ligne : 13/01/2015 En ligne : https://doi.org/10.1109/TGRS.2014.2365953 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76391
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 6 (June 2015) . - pp 2975 - 2986[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015061 SL Revue Centre de documentation Revues en salle Disponible Double constrained NMF for hyperspectral unmixing / Xiaoqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)
[article]
Titre : Double constrained NMF for hyperspectral unmixing Type de document : Article/Communication Auteurs : Xiaoqiang Lu, Auteur ; Hao Wu, Auteur ; Yuan Yuan, Auteur Année de publication : 2014 Article en page(s) : pp 2746 - 2758 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] contrainte spectrale
[Termes IGN] factorisation
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectraleRésumé : (Auteur) Given only the collected hyperspectral data, unmixing aims at obtaining the latent constituent materials and their corresponding fractional abundances. Recently, many nonnegative matrix factorization (NMF)-based algorithms have been developed to deal with this issue. Considering that the abundances of most materials may be sparse, the sparseness constraint is intuitively introduced into NMF. Although sparse NMF algorithms have achieved advanced performance in unmixing, the result is still susceptible to unstable decomposition and noise corruption. To reduce the aforementioned drawbacks, the structural information of the data is exploited to guide the unmixing. Since similar pixel spectra often imply similar substance constructions, clustering can explicitly characterize this similarity. Through maintaining the structural information during the unmixing, the resulting fractional abundances by the proposed algorithm can well coincide with the real distributions of constituent materials. Moreover, the additional clustering-based regularization term also lessens the interference of noise to some extent. The experimental results on synthetic and real hyperspectral data both illustrate the superiority of the proposed method compared with other state-of-the-art algorithms. Numéro de notice : A2014-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2265322 En ligne : https://doi.org/10.1109/TGRS.2013.2265322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33166
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 5 tome 1 (May 2014) . - pp 2746 - 2758[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014051A RAB Revue Centre de documentation En réserve L003 En circulation
Exclu du prêtGraph-regularized low-rank representation for destriping of hyperspectral images / Xiaoqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)Permalink