Détail de l'auteur
Auteur Masato Hayashi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan / Masato Hayashi in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)
[article]
Titre : Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan Type de document : Article/Communication Auteurs : Masato Hayashi, Auteur ; Nobuko Saigusa, Auteur ; Hiroyuki Oguma, Auteur ; Yoshiki Ymagata, Auteur Année de publication : 2013 Article en page(s) : pp 12 - 18 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] hauteur de la végétation
[Termes IGN] Hokkaido (Japon)
[Termes IGN] modèle numérique de surface
[Termes IGN] penteRésumé : (Auteur) Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (?10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR. Numéro de notice : A2013-385 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.04.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.04.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32523
in ISPRS Journal of photogrammetry and remote sensing > vol 81 (July 2013) . - pp 12 - 18[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013071 RAB Revue Centre de documentation En réserve L003 Disponible