Détail de l'auteur
Auteur Priyakant Sinha |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape / Niva Kiran Verma in Geocarto international, vol 37 n° 1 ([01/01/2022])
[article]
Titre : Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape Type de document : Article/Communication Auteurs : Niva Kiran Verma, Auteur ; David Lamb, Auteur ; Priyakant Sinha, Auteur Année de publication : 2022 Article en page(s) : pp 70 - 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Australie
[Termes IGN] carte de la végétation
[Termes IGN] dépérissement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] précision de la classification
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) Rapid decline and death of rural Eucalypts trees of all ages and species have been reported in the farmscapes of regional Australia due to various environmental and farming management related factors. The identification of existing farm tree species is important for long term management strategies to provide ecosystem stability in the region. This study explored the feasibility of structural attributes of LiDAR and spectral and spatial characteristics of high resolution remote sensing data to identify and map Eucalyptus tree species. An object based image segmentation and rule-based classification algorithm were developed to delineate tree boundaries and species classification. The integration of two datasets improved the classification accuracy (65%) against their separate classification (52% and 41%, respectively). The identification of tree species will help in getting first-hand information on existing farm trees, which may be used in assessing tree condition in time series related to management practices and complex dieback problem. Numéro de notice : A2022-046 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1700555 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1700555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99412
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 70 - 90[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Markov land cover change modeling using pairs of time-series satellite images / Priyakant Sinha in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 11 (November 2013)
[article]
Titre : Markov land cover change modeling using pairs of time-series satellite images Type de document : Article/Communication Auteurs : Priyakant Sinha, Auteur ; Lalit Kumar, Auteur Année de publication : 2013 Article en page(s) : pp 1037 - 1051 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] flore locale
[Termes IGN] image Landsat-MSS
[Termes IGN] image Landsat-TM
[Termes IGN] image multitemporelle
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] occupation du sol
[Termes IGN] prédictionRésumé : (Auteur) Models of change processes created with the Markov chain model (MCM) can be used in the interpolation of temporal data and in short-term change projections. However, there are two major issues associated with the use of Markov models for land-cover change projections: the stationarity of change and the impact of neighboring cells on the change areas. This study addressed these two issues using an investigation of five time-series land-cover datasets generated between 1972 and 2009 for the Liverpool region of NSW, Australia. Four short- term transition matrices were computed, and the results were used to predict land-cover distributions for the near future. The issue of neighborhood effects was addressed by incorporating spatial components in a Cellular Automata (CA)-based MCM, and the results were compared with those derived from a normal MCM. Given the marginal improvements in the simulation achieved with CA-MCM rather than MCM, and because of the ability of CA-MCM to incorporate spatial variants, CA-MCM was determined to be the more suitable method for predicting land-cover changes for the year 2019. The land-cover projection indicated that future land-cover changes will likely continue to affect the natural vegetation, which will in turn likely decrease through the continued conversion of natural to agricultural lands over the years. Numéro de notice : A2013-598 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.11.1037 En ligne : https://doi.org/10.14358/PERS.79.11.1037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32734
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 11 (November 2013) . - pp 1037 - 1051[article]Independent two-step thresholding of binary images in inter-annual land cover change/no-change identification / Priyakant Sinha in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)
[article]
Titre : Independent two-step thresholding of binary images in inter-annual land cover change/no-change identification Type de document : Article/Communication Auteurs : Priyakant Sinha, Auteur ; Lalit Kumar, Auteur Année de publication : 2013 Article en page(s) : pp 31 - 43 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] détection de changement
[Termes IGN] écart type
[Termes IGN] image binaire
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] occupation du sol
[Termes IGN] segmentation binaire
[Termes IGN] seuillage d'imageRésumé : (Auteur) Binary images from one or more spectral bands have been used in many studies for land-cover change/no-change identification in diverse climatic conditions. Determination of appropriate threshold levels for change/no-change identification is a critical factor that influences change detection result accuracy. The most used method to determine the threshold values is based on the standard deviation (SD) from the mean, assuming the amount of change (due to increase or decrease in brightness values) to be symmetrically distributed on a standard normal curve, which is not always true. Considering the asymmetrical nature of distribution histogram for the two sides, this study proposes a relatively simple and easy ‘Independent Two-Step’ thresholding approach for optimal threshold value determination for spectrally increased and decreased part using Normalized Difference Vegetation Index (NDVI) difference image. Six NDVI differencing images from 2007 to 2009 of different seasons were tested for inter-annual or seasonal land cover change/no-change identification. The relative performances of the proposed and two other methods towards the sensitivity of distributions were tested and an improvement of ~3% in overall accuracy and of ~0.04 in Kappa was attained with the Proposed Method. This study demonstrated the importance of consideration of normality of data distributions in land-cover change/no-change analysis. Numéro de notice : A2013-387 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.03.010 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.03.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32525
in ISPRS Journal of photogrammetry and remote sensing > vol 81 (July 2013) . - pp 31 - 43[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013071 RAB Revue Centre de documentation En réserve L003 Disponible