Détail de l'auteur
Auteur Randolph H. Wynne |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Towards a polyalgorithm for land use change detection / Rishu Saxena in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : Towards a polyalgorithm for land use change detection Type de document : Article/Communication Auteurs : Rishu Saxena, Auteur ; Layne T. Watson, Auteur ; Randolph H. Wynne, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 217 - 234 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] série temporelleMots-clés libres : EWMACD Exponentially weighted moving average change detection LandTrendR Résumé : (Auteur) One way of analyzing satellite images for land use and land cover change (LULCC) is time series analysis (TSA). Most of the many TSA based LULCC algorithms proposed in the remote sensing community perform well on datasets for which they were designed, but their performance on randomly chosen datasets from across the globe has not been studied. A polyalgorithm combines several basic algorithms, each meant to solve the same problem, producing a strategy that unites the strengths and circumvents the weaknesses of constituent algorithms. The foundation of the proposed TSA based ‘polyalgorithm’ for LULCC is three algorithms (BFAST, EWMACD, and LandTrendR), precisely described mathematically, and chosen to be fundamentally distinct from each other in design and in the phenomena they capture. Analysis of results representing success, failure, and parameter sensitivity for each algorithm is presented. For a given pixel, Hausdorff distance is used to compare the distance between the change times (breakpoints) obtained from two different algorithms. Timesync validation data, a dataset that is based on human interpretation of Landsat time series in concert with historical aerial photography, is used for validation. The polyalgorithm yields more accurate results than EWMACD and LandTrendR alone, but counterintuitively not better than BFAST alone. This nascent work will be directly useful in land use and land cover change studies, of interest to terrestrial science research, especially regarding anthropogenic impacts on the environment. Numéro de notice : A2018-401 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.07.002 Date de publication en ligne : 27/07/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.07.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90832
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 217 - 234[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar / Matthew Sumnall in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar Type de document : Article/Communication Auteurs : Matthew Sumnall, Auteur ; Thomas R. Fox, Auteur ; Randolph H. Wynne, Auteur ; Valerie A. Thomas, Auteur Année de publication : 2017 Article en page(s) : pp 186 - 200 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] couvert forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] Etats-Unis
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] Pinophyta
[Termes IGN] Pinus taeda
[Termes IGN] sous-boisRésumé : (Auteur) The objective of the current study was to develop methods for estimating the height and horizontal coverage of the forest understorey using airborne Lidar data in three managed pine plantation forest typical of the south eastern USA. The current project demonstrates a two-step approach applied automatically across a given study site extent. The first operation divided the study site extent into a regularly spaced grid (25 × 25 m) and identified the potential height range of the main Loblolly pine canopy layer for each grid-cell through aggregating Lidar return height measurements into a ‘stack’ of vertical height bins describing the frequency of returns by height. Once height bins were created, the resulting vertical distributions were smoothed with a regression curve line function and the main canopy vertical layer was identified through the detection of local maxima and minima. The second operation sub-divided the 25 × 25 m grid-cell into 1 × 1 m horizontal grid, for which height-bin stacks were created for each cell. Vertical features below the main canopy were then identified at this scale in the same manner as in the previous step, and classified as understorey features if they were lower in height than the 25 × 25 m estimate of the main canopy layer. The heights of the tallest understorey and sub-canopy layers were kept, and used to produce a rasterized map of the understorey layer height at the 1 × 1 m scale. Lidar derived estimates of the 25 × 25 m lowest vertical extent of the coniferous canopy correlated highly with field data (R2 0.87; RMSE 2.1 m). Estimates of understorey horizontal cover ranged from R2 0.80 to 0.90 (RMSE 6.6–11.7%), and maximum understorey layer height ranged from R2 0.69 to 0.80 (RMSE 1.6–3.4 m) for the three study sites. The automated method deployed within the current study proved sufficient in determining the presence and absence of vegetation and artificial structures within the understorey portion of the current forest context, in addition to height and horizontal cover to a reasonable accuracy. Issues were encountered within older stands (e.g. more than 30 years old) where understorey deciduous vegetation layers intersected with the coniferous canopy layer, resulting in an underestimation of sub-dominant heights. Numéro de notice : A2017-726 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88411
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 186 - 200[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Approximating prediction uncertainty for random forest regression models / John W. Coulston in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 3 (March 2016)
[article]
Titre : Approximating prediction uncertainty for random forest regression models Type de document : Article/Communication Auteurs : John W. Coulston, Auteur ; Christine E. Blinn, Auteur ; Valerie A. Thomas, Auteur ; Randolph H. Wynne, Auteur Année de publication : 2016 Article en page(s) : pp 189 - 197 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] incertitude des données
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] prédiction
[Termes IGN] variableRésumé : (auteur) Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as inputs to other modeling applications such as fire modeling. Here we use a Monte Carlo approach to quantify prediction uncertainty for random forest regression models. We test the approach by simulating maps of dependent and independent variables with known characteristics and comparing actual errors with prediction errors. Our approach produced conservative prediction intervals across most of the range of predicted values. However, because the Monte Carlo approach was data driven, prediction intervals were either too wide or too narrow in sparse parts of the prediction distribution. Overall, our approach provides reasonable estimates of prediction uncertainty for random forest regression models. Numéro de notice : A2016-176 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.82.3.189 En ligne : https://doi.org/10.14358/PERS.82.3.189 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80506
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 3 (March 2016) . - pp 189 - 197[article]Utility of the wavelet transform for LAI estimation using hyperspectral data / Asim Banskota in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 7 (July 2013)
[article]
Titre : Utility of the wavelet transform for LAI estimation using hyperspectral data Type de document : Article/Communication Auteurs : Asim Banskota, Auteur ; Randolph H. Wynne, Auteur ; Shawn P. Serbin, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : 662 p. ; pp 653 - 662 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] forêt tempérée
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] Leaf Area Index
[Termes IGN] transformation en ondelettes
[Termes IGN] Wisconsin (Etats-Unis)Résumé : (Auteur) We employed the discrete wavelet transform to reflectance spectra obtained from hyperspectral data to improve estimation of LAi in temperate forests. We estimated LAl for 32 plots across a range afforest types in Wisconsin using hemispherical photography. Plot spectra were extracted from AVIRIS data and transformed into wavelet features using the Haar wavelet. Separately, subsets of spectral bands and the Haar features selected by a genetic algorithm were used as independent variables in linear regressions. Models using wavelet coefficients explained the most variance for both broadleaf plots (R2 = 0.90 for wavelet features versus R2 = 0.80 for spectral bands) and all plots independent afforest type (R2 = 0.79 for wavelet features vs. R2 = 0.58 for spectral bands). The forest-type specific models were better than the models using all plots combined. Overall, wavelet features appear superior to band reflectances alone for estimating temperate forest LAI using hyperspectral data. Numéro de notice : A2013-394 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.79.7.653 En ligne : https://doi.org/10.14358/PERS.79.7.653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32532
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 7 (July 2013) . - 662 p. ; pp 653 - 662[article]