Détail de l'auteur
Auteur Shawn P. Serbin |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem / Aaron G. Kamoske in Forest ecology and management, vol 433 (15 February 2019)
[article]
Titre : Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem Type de document : Article/Communication Auteurs : Aaron G. Kamoske, Auteur ; Kyla M. Dahlin, Auteur ; Scott C. Stark, Auteur ; Shawn P. Serbin, Auteur Année de publication : 2019 Article en page(s) : pp 364 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] densité du feuillage
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] forêt tempérée
[Termes IGN] Leaf Area Index
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Forest processes that play an essential role in carbon sequestration, such as light use efficiency, photosynthetic capacity, and trace gas exchange, are closely tied to the three-dimensional structure of forest canopies. However, the vertical distribution of leaf traits is not uniform; leaves at varying vertical positions within the canopy are physiologically unique due to differing light and environmental conditions, which leads to higher carbon storage than if light conditions were constant throughout the canopy. Due to this within-canopy variation, three-dimensional structural traits are critical to improving our estimates of global carbon cycling and storage by Earth system models and to better understanding the effects of disturbances on carbon sequestration in forested ecosystems. In this study, we describe a reproducible and open-source methodology using the R programming language for estimating leaf area density (LAD; the total leaf area per unit of volume) from airborne LiDAR. Using this approach, we compare LAD estimates at the Smithsonian Environmental Research Center in Maryland, USA, from two airborne LiDAR systems, NEON AOP and NASA G-LiHT, which differ in survey and instrument specifications, collections goals, and laser pulse densities. Furthermore, we address the impacts of the spatial scale of analysis as well as differences in canopy penetration and pulse density on LAD and leaf area index (LAI) estimates, while offering potential solutions to enhance the accuracy of these estimates. LAD estimates from airborne LiDAR can be used to describe the three-dimensional structure of forests across entire landscapes. This information can help inform forest management and conservation decisions related to the estimation of aboveground biomass and productivity, the response of forests to large-scale disturbances, the impacts of drought on forest health, the conservation of bird habitat, as well as a host of other important forest processes and responses. Numéro de notice : A2019-008 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.11.017 Date de publication en ligne : 21/11/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.11.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91601
in Forest ecology and management > vol 433 (15 February 2019) . - pp 364 - 375[article]Utility of the wavelet transform for LAI estimation using hyperspectral data / Asim Banskota in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 7 (July 2013)
[article]
Titre : Utility of the wavelet transform for LAI estimation using hyperspectral data Type de document : Article/Communication Auteurs : Asim Banskota, Auteur ; Randolph H. Wynne, Auteur ; Shawn P. Serbin, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : 662 p. ; pp 653 - 662 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] forêt tempérée
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] Leaf Area Index
[Termes IGN] transformation en ondelettes
[Termes IGN] Wisconsin (Etats-Unis)Résumé : (Auteur) We employed the discrete wavelet transform to reflectance spectra obtained from hyperspectral data to improve estimation of LAi in temperate forests. We estimated LAl for 32 plots across a range afforest types in Wisconsin using hemispherical photography. Plot spectra were extracted from AVIRIS data and transformed into wavelet features using the Haar wavelet. Separately, subsets of spectral bands and the Haar features selected by a genetic algorithm were used as independent variables in linear regressions. Models using wavelet coefficients explained the most variance for both broadleaf plots (R2 = 0.90 for wavelet features versus R2 = 0.80 for spectral bands) and all plots independent afforest type (R2 = 0.79 for wavelet features vs. R2 = 0.58 for spectral bands). The forest-type specific models were better than the models using all plots combined. Overall, wavelet features appear superior to band reflectances alone for estimating temperate forest LAI using hyperspectral data. Numéro de notice : A2013-394 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.79.7.653 En ligne : https://doi.org/10.14358/PERS.79.7.653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32532
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 7 (July 2013) . - 662 p. ; pp 653 - 662[article]