Détail de l'auteur
Auteur Abel Ramoelo |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
[article]
Titre : Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa Type de document : Article/Communication Auteurs : Cecilia Masemola, Auteur ; Moses Azong Cho, Auteur ; Abel Ramoelo, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 168 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Acacia (genre)
[Termes IGN] Afrique du sud (état)
[Termes IGN] canopée
[Termes IGN] cartographie automatique
[Termes IGN] chlorophylle
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] échantillonnage
[Termes IGN] espèce exotique envahissante
[Termes IGN] essence indigène
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] réflectance
[Termes IGN] surveillance de la végétationRésumé : (auteur) Invasive alien plants (IAPs) threaten biodiversity and critical ecosystem services worldwide. There is, therefore, an urgent need to develop intervention measures to control the spread of IAPs. Efforts to control and monitor the spread of IAPs would require their current and detailed distribution over a large geographic area. Recently launched multispectral instrument on-board Sentinel-2 provides free data with good spatiotemporal and spectral resolution, compared to Landsat datasets. The Sentinel-2 dataset, therefore, can be a useful source of the IAPs spatial information required for detection and monitoring purposes. We combined Sentinel-2 data with a radiative transfer model to discriminate IAPs (Acacia mearnsii and Acacia dealbata) from surrounding native tree species in Van Reenen, KwaZulu-Natal, South Africa. The forward mode of combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also referred to as PROSAIL was used to simulate reflectance corresponding to bands of Sentinel-MSI, while the PROSAIL model inversion retrieved leaf area index (LAI) and canopy chlorophyll contents (CCC) of the IAPs and native species. Both reflectance and retrieved properties were used to map the distribution of the species within the study area. Our results showed that A. mearnsii and A. dealbata could be accurately discriminated from the surrounding native trees using integrated PROSAIL Sentinel-2 based model. We found that CCC– and LAI-based (% accuracy = 92.8%, 91.4% for CCC and LAI, respectively) modelling produced a higher classification accuracy than field sampling-based modelling (Accuracy = 90.2% (IAP), 82.2% (NAT) and kappa coefficient = 0.84 (IAP), 0.78 (NAT)). Simulated bands corresponding to Sentinel-2 data, on the other hand, produced species maps comparable to field sampling-based maps. Overall, the integrated PROSAIL Sentinel-2 inversion approach proved suitable for detecting and mapping IAPs over a large area. Due to the high spatiotemporal coverage of Sentinel-2, satellite images, the model developed showed the potential to contribute to the IAPs monitoring systems. Numéro de notice : A2020-352 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.009 Date de publication en ligne : 13/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95235
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 153 - 168[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data / Abel Ramoelo in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
[article]
Titre : Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data Type de document : Article/Communication Auteurs : Abel Ramoelo, Auteur ; Andrew K. Skidmore, Auteur ; Moses Azong Cho, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 27 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] azote
[Termes IGN] données environnementales
[Termes IGN] herbe
[Termes IGN] image hyperspectrale
[Termes IGN] indice de végétation
[Termes IGN] parc naturel national
[Termes IGN] parcours
[Termes IGN] phosphore
[Termes IGN] régression non linéaire
[Termes IGN] savaneRésumé : (Auteur) Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems. Numéro de notice : A2013-409 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.04.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.04.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32547
in ISPRS Journal of photogrammetry and remote sensing > vol 82 (August 2013) . - pp 27 - 40[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013081 RAB Revue Centre de documentation En réserve L003 Disponible