Détail de l'auteur
Auteur Ian J. Davenport |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
CHP toolkit : case study of LAIe sensitivity to discontinuity of canopy cover in fruit plantations / Karolina D. Fieber in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
[article]
Titre : CHP toolkit : case study of LAIe sensitivity to discontinuity of canopy cover in fruit plantations Type de document : Article/Communication Auteurs : Karolina D. Fieber, Auteur ; Ian J. Davenport, Auteur ; James M. Ferryman, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 5071 - 5080 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] forme d'onde pleine
[Termes IGN] hauteur des arbres
[Termes IGN] Leaf Area Index
[Termes IGN] logiciel libre
[Termes IGN] vergerRésumé : (Auteur) This paper presents an open-source canopy height profile (CHP) toolkit designed for processing small-footprint full-waveform LiDAR data to obtain the estimates of effective leaf area index (LAIe) and CHPs. The use of the toolkit is presented with a case study of LAIe estimation in discontinuous-canopy fruit plantations. The experiments are carried out in two study areas, namely, orange and almond plantations, with different percentages of canopy cover (48% and 40%, respectively). For comparison, two commonly used discrete-point LAIe estimation methods are also tested. The LiDAR LAIe values are first computed for each of the sites and each method as a whole, providing “apparent” site-level LAIe, which disregards the discontinuity of the plantations' canopies. Since the toolkit allows for the calculation of the study area LAIe at different spatial scales, between-tree-level clumping can be easily accounted for and is then used to illustrate the impact of the discontinuity of canopy cover on LAIe retrieval. The LiDAR LAIe estimates are therefore computed at smaller scales as a mean of LAIe in various grid-cell sizes, providing estimates of “actual” site-level LAIe. Subsequently, the LiDAR LAIe results are compared with theoretical models of “apparent” LAIe versus “actual” LAIe, based on known percent canopy cover in each site. The comparison of those models to LiDAR LAIe derived from the smallest grid-cell sizes against the estimates of LAIe for the whole site has shown that the LAIe estimates obtained from the CHP toolkit provided values that are closest to those of theoretical models. Numéro de notice : A2016-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2550623 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2550623 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83074
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5071 - 5080[article]Validation of canopy height profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment / Karolina D. Fieber in ISPRS Journal of photogrammetry and remote sensing, vol 104 (June 2015)
[article]
Titre : Validation of canopy height profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment Type de document : Article/Communication Auteurs : Karolina D. Fieber, Auteur ; Ian J. Davenport, Auteur ; Mihai A. Tanase, Auteur ; James M. Ferryman, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 144 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Australie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forme d'onde pleine
[Termes IGN] hauteur des arbres
[Termes IGN] Leaf Area Index
[Termes IGN] modèle numérique de surface de la canopéeRésumé : (auteur) A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550 nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5 m grids (grid-processed). LiDAR profiles were then compared to field biomass profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests. Numéro de notice : A2015-702 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.03.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.03.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78338
in ISPRS Journal of photogrammetry and remote sensing > vol 104 (June 2015) . - pp 144 - 157[article]Analysis of full-waveform LiDAR data for classification of an orange orchard scene / Karolina D. Fieber in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
[article]
Titre : Analysis of full-waveform LiDAR data for classification of an orange orchard scene Type de document : Article/Communication Auteurs : Karolina D. Fieber, Auteur ; Ian J. Davenport, Auteur ; James M. Ferryman, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 63 - 82 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Citrus sinensis
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] vergerRésumé : (Auteur) Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient Y was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and Y. For single-peak waveforms the scatterplot of Y versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return Y values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the Y versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient Y of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties. Numéro de notice : A2013-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.05.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.05.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32550
in ISPRS Journal of photogrammetry and remote sensing > vol 82 (August 2013) . - pp 63 - 82[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013081 RAB Revue Centre de documentation En réserve L003 Disponible Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images / D.C. Mason in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
[article]
Titre : Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images Type de document : Article/Communication Auteurs : D.C. Mason, Auteur ; Ian J. Davenport, Auteur ; J.C. Neal, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 3041 - 3052 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Angleterre
[Termes IGN] détection
[Termes IGN] image TerraSAR-X
[Termes IGN] inondation
[Termes IGN] temps réel
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (Auteur) A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high-resolution synthetic aperture radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high-resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18%, respectively. Numéro de notice : A2012-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2178030 Date de publication en ligne : 21/02/2012 En ligne : https://doi.org/10.1109/TGRS.2011.2178030 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31826
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 8 (August 2012) . - pp 3041 - 3052[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012081 RAB Revue Centre de documentation En réserve L003 Disponible Characterizing errors in airborne Laser altimetry data to extract soil roughness / Ian J. Davenport in IEEE Transactions on geoscience and remote sensing, vol 42 n° 10 (October 2004)
[article]
Titre : Characterizing errors in airborne Laser altimetry data to extract soil roughness Type de document : Article/Communication Auteurs : Ian J. Davenport, Auteur ; N. Holden, Auteur ; R.J. Gurney, Auteur Année de publication : 2004 Conférence : IGARSS 2003, International Geoscience And Remote Sensing Symposium 21/07/2003 25/07/2003 Toulouse France Proceedings IEEE Article en page(s) : pp 2130 - 2141 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altitude
[Termes IGN] cohérence des données
[Termes IGN] erreur aléatoire
[Termes IGN] erreur de mesure
[Termes IGN] erreur moyenne quadratique altimétrique
[Termes IGN] rugosité du sol
[Termes IGN] surface du sol
[Termes IGN] système de positionnement par satellites
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20 cm in elevation and 40 cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data and, thus, assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50 ms apart, elevations have a local standard deviation in height of 3.5 cm, enabling the local measurement of surface roughness of the order of 5 cm. Points acquired seconds apart acquire an additional random error due to differential geographic positioning system fluctuation. Measurements made up to an hour apart show an elevation drift of 7 cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4 cm. The root mean square planimetric error in point location was derived as 37.4 cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the U.K. intertidal zone monitoring. Numéro de notice : A2004-455 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2004.834648 En ligne : https://doi.org/10.1109/TGRS.2004.834648 Format de la ressource électronique : URl article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26975
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 10 (October 2004) . - pp 2130 - 2141[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04101 RAB Revue Centre de documentation En réserve L003 Disponible Image processing of airborne scanning laser altimetry data for improved river flood modelling / D.M. Cobby in ISPRS Journal of photogrammetry and remote sensing, vol 56 n° 2 (December 2001 - March 2002)Permalink