Détail de l'auteur
Auteur Mihai Datcu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep SAR-Net: learning objects from signals / Zhongling Huang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Deep SAR-Net: learning objects from signals Type de document : Article/Communication Auteurs : Zhongling Huang, Auteur ; Mihai Datcu, Auteur ; Zongxu Pan, Auteur ; Bin Lei, Auteur Année de publication : 2020 Article en page(s) : pp 179 - 193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra
[Termes IGN] matrice de covariance
[Termes IGN] micro-onde
[Termes IGN] polarisation
[Termes IGN] temps-fréquenceRésumé : (Auteur) This paper introduces a novel Synthetic Aperture Radar (SAR) specific deep learning framework for complex-valued SAR images. The conventional deep convolutional neural networks based methods usually take the amplitude information of single-polarization SAR images as the input to learn hierarchical spatial features automatically, which may have difficulties in discriminating objects with similar texture but discriminative scattering patterns. Our novel deep learning framework, Deep SAR-Net, takes complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground. On the one hand, we transfer the detected SAR images pre-trained layers to extract spatial features from intensity images. On the other hand, we dig into the Fourier domain to learn physical properties of the objects by joint time-frequency analysis on complex-valued SAR images. We evaluate the effectiveness of Deep SAR-Net on three complex-valued SAR datasets from Sentinel-1 and TerraSAR-X satellite and demonstrate how it works better than conventional deep CNNs, especially on man-made objects classes. The proposed datasets and the trained Deep SAR-Net model with all codes are provided. Numéro de notice : A2020-065 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.016 Date de publication en ligne : 23/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.016 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94583
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 179 - 193[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Information content of very high resolution SAR images: study of feature extraction and imaging parameters / Corneliu Dimitru in IEEE Transactions on geoscience and remote sensing, vol 51 n° 8 (August 2013)
[article]
Titre : Information content of very high resolution SAR images: study of feature extraction and imaging parameters Type de document : Article/Communication Auteurs : Corneliu Dimitru, Auteur ; Mihai Datcu, Auteur Année de publication : 2013 Article en page(s) : pp 4591 - 4610 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] angle d'incidence
[Termes IGN] Berlin
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image radar moirée
[Termes IGN] image TerraSAR-X
[Termes IGN] matrice de co-occurrence
[Termes IGN] orbite
[Termes IGN] Ottawa
[Termes IGN] Toulouse
[Termes IGN] transformation de Fourier
[Termes IGN] VeniseRésumé : (Auteur) In this paper, we propose to study the dependence of information extraction technique performance on synthetic aperture radar (SAR) imaging parameters and the selected primitive features (PFs). The evaluation is done on TerraSAR-X data, and the interpretation is realized automatically. In the first part of this paper (use case I), the following issues are analyzed: 1) finding the optimal TerraSAR-X products and their limits of variability and 2) retrieving the number of categories/classes that can be extracted from the TerraSAR-X images using the PFs (gray-level co-occurrence matrix, Gabor filters, quadrature mirror filters, and nonlinear short-time Fourier transform). In the second part of this paper (use case II), we investigate the invariance of the products with the orbit direction and incidence angle. On the one hand, the results show that using ascending looking is better than using descending looking with an average accuracy increase of 7%-8%, approximately. On the other hand, the classification accuracy for the incidence angle varies from a lower value of the incidence to an upper value of the incidence angle (depending on the sensor range) with 4%-5%. The test sites are Venice (Italy), Toulouse (France), Berlin (Germany), and Ottawa (Canada) and are covering as much as possible the huge diversity of modes, types, and geometric resolution configuration of the TerraSAR-X. For the evaluation of all these parameters (resolution, features, orbit looking, and incidence angle), the support-vector-machine classifier is considered. To evaluate the accuracy of the classification, the precision/recall metric is calculated. The first contribution of this paper is the evaluation of different PFs (proposed in the literature for different types of images) and adaptation of these for SAR images. These features are compared (based on the accuracy of the classification) for the first time for a multiresolution pyramid specially built for this purpose. During the evaluation,- all the classes were annotated, and a semantic meaning was defined for each class. The second main contribution of this paper is the evaluation of the dependence on the patch size, orbit direction, and incidence angle of the TerraSAR-X. This type of evaluation has not been systematically investigated so far. For the evaluation of the optimal patch, two different patch sizes were defined, with the constrained that the size on ground needs to cover a minimum of one object (e.g., 200 * 200 m on ground). This patch size depends also on the parameters of the data such as resolution and pixel spacing. The investigation of orbit looking and incidence angle is very important for indexing large data sets that has a higher variability of these two parameters. These parameters influence the accuracy of the classification (e.g., if the incidence angle is closer to the lower bounds or closer to the upper bound of the satellite sensor range). Numéro de notice : A2013-423 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2265413 En ligne : https://doi.org/10.1109/TGRS.2013.2265413 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32561
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 8 (August 2013) . - pp 4591 - 4610[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013081 RAB Revue Centre de documentation En réserve L003 Disponible