Détail de l'auteur
Auteur Michael J. Falkowski |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auscultation topographique
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-OLI
[Termes IGN] inventaire forestier local
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle d'erreur
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4551 - 4569[article]A methodology to characterize vertical accuracies in lidar-derived products at landscape scales / Wade T. Tinkham in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)
[article]
Titre : A methodology to characterize vertical accuracies in lidar-derived products at landscape scales Type de document : Article/Communication Auteurs : Wade T. Tinkham, Auteur ; Chad .m Hoffman, Auteur ; Michael J. Falkowski, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 709 - 716 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage
[Termes IGN] précision altimétriqueRésumé : (Auteur) Light detection and ranging (lidar) is the premier technology for high-resolution elevation measurements in complex landscapes. Lidar error assessments allow for objective interpretation of Digital Elevation Models (DEMs) and products reliant on these layers. The purpose of this study is to spatially estimate the vertical error of a lidar-derived DEM across seven cover types through modeling of field survey data. We use thirty-four variables and ground-based field survey data in a Random Forest regression to predict elevation error. Four variables captured the variability within the lidar errors, with three variables relevant to the distribution of returns within the vegetation and one relating to the terrain form. Good agreement was observed when comparing the survey against the model predictions (u = -0.02 m, s = 0.13 m, and RMSE = 0.14 m). With most lidar products reliant upon accurate production of DEMs, providing spatially explicit assessments of uncertainty at the landscape level will increase user confidence in lidar products. Numéro de notice : A2013-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.8.709 En ligne : https://doi.org/10.14358/PERS.79.8.709 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32563
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 8 (August 2013) . - pp 709 - 716[article]