Détail de l'auteur
Auteur Lefei Zhang |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel semisupervised active-learning algorithm for hyperspectral image classification / Zengmao Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : A novel semisupervised active-learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Zengmao Wang, Auteur ; Bo Du, Auteur ; Lefei Zhang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 3071 - 3083 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] image hyperspectrale
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Less training samples are a challenging problem in hyperspectral image classification. Active learning and semisupervised learning are two promising techniques to address the problem. Active learning solves the problem by improving the quality of the training samples, while semisupervised learning solves the problem by increasing the quantity of the training samples. However, they pay too much attention to the discriminative information in the unlabeled data, leading to information bias to train supervised models, and much more effort to label samples. Therefore, a method to discover representativeness and discriminativeness by semisupervised active learning is proposed. It takes advantages of both active learning and semisupervised learning. The representativeness and discriminativeness are discovered with a labeling process based on a supervised clustering technique and classification results. Specifically, the supervised clustering results can discover important structural information in the unlabeled data, and the classification results are also highly confidential in the active-learning process. With these clustering results and classification results, we can assign pseudolabels to the unlabeled data. Meanwhile, the unlabeled samples that cannot be assigned with pseudolabels with high confidence at each iteration are regarded as candidates in active learning. The methodology is validated on four hyperspectral data sets. Significant improvements in classification accuracy are achieved by the proposed method with respect to the state-of-the-art methods. Numéro de notice : A2017-473 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2650938 En ligne : https://doi.org/10.1109/TGRS.2017.2650938 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86398
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3071 - 3083[article]Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning / Yanni Dong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning Type de document : Article/Communication Auteurs : Yanni Dong, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Lefei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 2509 - 2524 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] réductionRésumé : (Auteur) The high-dimensional data space of hyperspectral images (HSIs) often result in ill-conditioned formulations, which finally leads to many of the high-dimensional feature spaces being empty and the useful data existing primarily in a subspace. To avoid these problems, we use distance metric learning for dimensionality reduction. The goal of distance metric learning is to incorporate abundant discriminative information by reducing the dimensionality of the data. Considering that global metric learning is not appropriate for all training samples, this paper proposes an ensemble discriminative local metric learning (EDLML) algorithm for HSI analysis. The EDLML algorithm learns robust local metrics from both the training samples and the relative neighborhood of them and considers the different local discriminative distance metrics by dealing with the data region by region. It aims to learn a subspace to keep all the samples in the same class are as near as possible, while those from different classes are separated. The learned local metrics are then used to build an ensemble metric. Experiments on a number of different hyperspectral data sets confirm the effectiveness of the proposed EDLML algorithm compared with that of the other dimension reduction methods. Numéro de notice : A2017-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2645703 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2645703 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86388
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2509 - 2524[article]A robust background regression based score estimation algorithm for hyperspectral anomaly detection / Zhao Rui in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)
[article]
Titre : A robust background regression based score estimation algorithm for hyperspectral anomaly detection Type de document : Article/Communication Auteurs : Zhao Rui, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Lefei Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 126 – 144 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'anomalie
[Termes IGN] image hyperspectrale
[Termes IGN] régressionRésumé : (Auteur) Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice. Numéro de notice : A2016--023 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.10.006 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.10.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83886
in ISPRS Journal of photogrammetry and remote sensing > vol 122 (December 2016) . - pp 126 – 144[article]Hyperspectral remote sensing image subpixel target detection based on supervised metric learning / Lefei Zhang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)
[article]
Titre : Hyperspectral remote sensing image subpixel target detection based on supervised metric learning Type de document : Article/Communication Auteurs : Lefei Zhang, Auteur ; Liangpei Zhang, Auteur ; Dacheng Tao, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 4955 - 4965 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] classification dirigée
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] image hyperspectraleRésumé : (Auteur) The detection and identification of target pixels such as certain minerals and man-made objects from hyperspectral remote sensing images is of great interest for both civilian and military applications. However, due to the restriction in the spatial resolution of most airborne or satellite hyperspectral sensors, the targets often appear as subpixels in the hyperspectral image (HSI). The observed spectral feature of the desired target pixel (positive sample) is therefore a mixed signature of the reference target spectrum and the background pixels spectra (negative samples), which belong to various land cover classes. In this paper, we propose a novel supervised metric learning (SML) algorithm, which can effectively learn a distance metric for hyperspectral target detection, by which target pixels are easily detected in positive space while the background pixels are pushed into negative space as far as possible. The proposed SML algorithm first maximizes the distance between the positive and negative samples by an objective function of the supervised distance maximization. Then, by considering the variety of the background spectral features, we put a similarity propagation constraint into the SML to simultaneously link the target pixels with positive samples, as well as the background pixels with negative samples, which helps to reject false alarms in the target detection. Finally, a manifold smoothness regularization is imposed on the positive samples to preserve their local geometry in the obtained metric. Based on the public data sets of mineral detection in an Airborne Visible/Infrared Imaging Spectrometer image and fabric and vehicle detection in a Hyperspectral Mapper image, quantitative comparisons of several HSI target detection methods, as well as some state-of-the-art metric learning algorithms, were performed. All the experimental results demonstrate the effectiveness of the proposed SML algorithm for hyperspectral target detection. Numéro de notice : A2014-434 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2286195 En ligne : https://doi.org/10.1109/TGRS.2013.2286195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73971
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 8 Tome 2 (August 2014) . - pp 4955 - 4965[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014081B RAB Revue Centre de documentation En réserve L003 Disponible Hyperspectral image noise reduction based on rank-1 tensor decomposition / Xian Guoa in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)
[article]
Titre : Hyperspectral image noise reduction based on rank-1 tensor decomposition Type de document : Article/Communication Auteurs : Xian Guoa, Auteur ; Xian Guo, Auteur ; Xin Huang, Auteur ; Liangpei Zhanga, Auteur ; Lefei Zhang, Auteur Année de publication : 2013 Article en page(s) : pp 50 - 63 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] calcul tensoriel
[Termes IGN] décomposition spatiale
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] tenseur
[Termes IGN] valeur propre
[Termes IGN] voxelRésumé : (Auteur) In this study, a novel noise reduction algorithm for hyperspectral imagery (HSI) is proposed based on high-order rank-1 tensor decomposition. The hyperspectral data cube is considered as a three-order tensor that is able to jointly treat both the spatial and spectral modes. Subsequently, the rank-1 tensor decomposition (R1TD) algorithm is applied to the tensor data, which takes into account both the spatial and spectral information of the hyperspectral data cube. A noise-reduced hyperspectral image is then obtained by combining the rank-1 tensors using an eigenvalue intensity sorting and reconstruction technique. Compared with the existing noise reduction methods such as the conventional channel-by-channel approaches and the recently developed multidimensional filter, the spatial–spectral adaptive total variation filter, experiments with both synthetic noisy data and real HSI data reveal that the proposed R1TD algorithm significantly improves the HSI data quality in terms of both visual inspection and image quality indices. The subsequent image classification results further validate the effectiveness of the proposed HSI noise reduction algorithm. Numéro de notice : A2013-488 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.06.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.06.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32626
in ISPRS Journal of photogrammetry and remote sensing > vol 83 (September 2013) . - pp 50 - 63[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013091 RAB Revue Centre de documentation En réserve L003 Disponible