Détail de l'auteur
Auteur Lauri Korhonen |
Documents disponibles écrits par cet auteur (14)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning / Diogo N. Cosenza in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
[article]
Titre : Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning Type de document : Article/Communication Auteurs : Diogo N. Cosenza, Auteur ; Petteri Packalen, Auteur ; Matti Maltamo, Auteur ; Petri Varvia, Auteur ; Janne Raty, Auteur ; Paola Soares, Auteur ; Margarida Tomé, Auteur ; Jacob L. Strunk, Auteur ; Lauri Korhonen, Auteur Année de publication : 2022 Article en page(s) : pp 385 - 395 Note générale : bibliographie Langues : Français (fre) Anglais (eng) Descripteur : [Termes IGN] forêt boréale
[Termes IGN] lasergrammétrie
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m3·ha–1) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots). Numéro de notice : A2022-948 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1139/cjfr-2021-0192 En ligne : https://doi.org/10.1139/cjfr-2021-0192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100413
in Canadian Journal of Forest Research > Vol 52 n° 3 (March 2022) . - pp 385 - 395[article]A comparison of linear-mode and single-photon airborne LiDAR in species-specific forest inventories / Janne Raty in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : A comparison of linear-mode and single-photon airborne LiDAR in species-specific forest inventories Type de document : Article/Communication Auteurs : Janne Raty, Auteur ; Petri Varvia, Auteur ; Lauri Korhonen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4401514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altitude
[Termes IGN] analyse comparative
[Termes IGN] capteur linéaire
[Termes IGN] carte de la végétation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] instrumentation Leica
[Termes IGN] instrumentation Riegl
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] photon
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] signal laserRésumé : (auteur) Single-photon airborne light detection and ranging (LiDAR) systems provide high-density data from high flight altitudes. We compared single-photon and linear-mode airborne LiDAR for the prediction of species-specific volumes in boreal coniferous-dominated forests. The LiDAR data sets were acquired at different flight altitudes using Leica SPL100 (single-photon, 17 points ⋅ m−2 ), Riegl VQ-1560i (linear-mode, 11 points ⋅ m−2 ), and Leica ALS60 (linear-mode, 0.6 points ⋅ m−2 ) LiDAR systems. Volumes were predicted at the plot-level using Gaussian process regression with predictor variables extracted from the LiDAR data sets and aerial images. Our findings showed that the Leica SPL100 produced a greater mean root-mean-squared error (RMSE) value (41.7 m3 ⋅ ha −1 ) than the Leica ALS60 (39.3 m3 ⋅ ha −1 ) in the prediction of species-specific volumes. Correspondingly, the Riegl VQ-1560i (mean RMSE = 33.0 m3 ⋅ ha −1 ) outperformed both the Leica ALS60 and the Leica SPL100. We found that the cumulative distributions of the first echo heights >1.3 m were rather similar among the data sets, whereas the last echo distributions showed larger differences. We conclude that the Leica SPL100 data set is suitable for area-based LiDAR inventory by tree species although the prediction errors are greater than with data obtained using the modern linear-mode LiDAR, such as Riegl VQ-1560i. Numéro de notice : A2022-026 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1109/TGRS.2021.3060670 Date de publication en ligne : 04/03/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3060670 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99257
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4401514[article]Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data Type de document : Article/Communication Auteurs : Nikos Georgopoulos, Auteur ; Ioannis Z. Gitas, Auteur ; Alexandra Stefanidou, Auteur ; Lauri Korhonen, Auteur ; Dimitris G. Stavrakoudis, Auteur Année de publication : 2021 Article en page(s) : n° 4827 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies (genre)
[Termes IGN] biomasse aérienne
[Termes IGN] capteur multibande
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt inéquienne
[Termes IGN] Grèce
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] montagne
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (auteur) Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems. Numéro de notice : A2021-953 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13234827 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/rs13234827 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99955
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4827[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Volumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements / Mikko Kukkonen in Silva fennica, vol 55 n° 1 (January 2021)
[article]
Titre : Volumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements Type de document : Article/Communication Auteurs : Mikko Kukkonen, Auteur ; Eetu Kotivuori, Auteur ; Matti Maltamo, Auteur ; Lauri Korhonen, Auteur ; Petteri Packalen, Auteur Année de publication : 2021 Article en page(s) : n° 10360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification barycentrique
[Termes IGN] données de terrain
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de simulation
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Photogrammetric point clouds obtained with unmanned aircraft systems (UAS) have emerged as an alternative source of remotely sensed data for small area forest management inventories (FMI). Nonetheless, it is often overlooked that small area FMI require considerable field data in addition to UAS data, to support the modelling of forest attributes. In this study, we propose a method whereby tree volumes by species are predicted with photogrammetric UAS data and Sentinel-2 images, using models fitted with airborne laser scanning data. The study area is in a managed boreal forest area in Eastern Finland. First, we predicted total volume with UAS point cloud metrics using a prior regression model fitted in another area with ALS data. Tree species proportions were then predicted by k nearest neighbor (k-NN) imputation based on bi-seasonal Sentinel-2 images without measuring new field plot data. Species-specific volumes were then obtained by multiplying the total volume by species proportions. The relative root mean square error (RMSE) values for total and species-specific volume predictions at the validation plot level (30 m × 30 m) were 9.0%, and 33.4–62.6%, respectively. Our approach appears promising for species-specific small area FMI in Finland and in comparable forest conditions in which suitable field plots are available. Numéro de notice : A2021-738 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10360 En ligne : https://doi.org/10.14214/sf.10360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98703
in Silva fennica > vol 55 n° 1 (January 2021) . - n° 10360[article]Transferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines / Lauri Korhonen in Silva fennica, vol 53 n° 3 (2019)PermalinkUsing LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland / Cheikh Mohamedou in Forestry, an international journal of forest research, vol 92 n° 3 (July 2019)PermalinkApplication of 3D triangulations of airborne laser scanning data to estimate boreal forest leaf area index / Titta Majasalmi in International journal of applied Earth observation and geoinformation, vol 59 (July 2017)PermalinkAutomatic segment-level tree species recognition using high resolution aerial winter imagery / Anton Kuzmin in European journal of remote sensing, vol 49 n° 1 (2016)PermalinkTracking the seasonal dynamics of boreal forest photosynthesis using EO-1 hyperion reflectance : sensitivity to structural and illumination effects / Rocío Hernández-Clemente in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)PermalinkNationwide airborne laser scanning based models for volume, biomass and dominant height in Finland / Eetu Kotivuori in Silva fennica, vol 50 n° 4 (2016)PermalinkTropical forest canopy cover estimation using satellite imagery and airborne lidar reference data / Lauri Korhonen in Silva fennica, vol 49 n° 5 ([01/10/2015])PermalinkBayesian approach to tree detection based on airborne laser scanning data / Timo Lähivaara in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)PermalinkBackscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure / Ilkka Korpela in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)Permalink