Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 77 n° 12Paru le : 01/12/2011 ISBN/ISSN/EAN : 0099-1112 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierBuilding feature extraction from airborne lidar data based on tensor voting algorithm / R. You in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 12 (December 2011)
[article]
Titre : Building feature extraction from airborne lidar data based on tensor voting algorithm Type de document : Article/Communication Auteurs : R. You, Auteur ; B. Lin, Auteur Année de publication : 2011 Article en page(s) : pp 1221 - 1231 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] calcul tensoriel
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] valeur propreRésumé : (Auteur) This study presents a novel approach based on the tensor voting framework for extracting building features from airborne lidar data. Geometric features of lidar points are represented by a tensor field in this paper. For the extraction of roof patches, a region-growing method with principal features is developed from the properties of eigenvalues and eigenvectors of the tensor field. Additionally, three new indicators for the strength of features are presented to reduce the effect of the number of points on feature identification, and a supervised method is proposed to determine the threshold of planar feature strength for the region-growing. The extraction of ridge and edge lines from the segmented roof patches is also discussed. Experiments based on airborne lidar data are described to demonstrate the effectiveness of the proposed method, with those the results compared with the PCA method. Numéro de notice : A2011-487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.77.12.1221 En ligne : https://doi.org/10.14358/PERS.77.12.1221 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31381
in Photogrammetric Engineering & Remote Sensing, PERS > vol 77 n° 12 (December 2011) . - pp 1221 - 1231[article]An assessment of internal neural network parameters affecting image classification accuracy / L. Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 12 (December 2011)
[article]
Titre : An assessment of internal neural network parameters affecting image classification accuracy Type de document : Article/Communication Auteurs : L. Zhou, Auteur ; X. Yang, Auteur Année de publication : 2011 Article en page(s) : pp 1233 - 1240 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal
[Termes IGN] image Landsat-ETM+
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] précision des donnéesRésumé : (Auteur) Neural networks are attractive intelligence techniques increasingly being used to classify remote sensor imagery. However, their performance is contingent upon a wide range of algorithm and non-algorithm factors. Despite significant progresses being made over the past two decades, there is no consistent guidance that has been established to automate the use of neural networks in remote sensing. The purpose of this study was to assess several internal parameters affecting image classification accuracy by multi-layer-perceptron (mlp) neural networks. The MLP networks have been considered as the most popular neural network architecture. We carefully configured and trained a set of neural network models with different internal parameter settings. Then, we used these models to classify an Enhanced Thematic Mapper Plus (ETM+) image into several major land cover categories, and the accuracy of each classified map was assessed. The results reveal that number of hidden layers, activation function, and training rate can substantially affect the classification accuracy and that a neural network with appropriate internal parameters can lead to a significant classification accuracy improvement for urban land covers when comparing to the outcome by the Gaussian Maximum Likelihood (GML) classifier. These findings can help design efficient neural network models for improved performance. Numéro de notice : A2011-488 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.77.12.1233 En ligne : https://doi.org/10.14358/PERS.77.12.1233 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31382
in Photogrammetric Engineering & Remote Sensing, PERS > vol 77 n° 12 (December 2011) . - pp 1233 - 1240[article]