Détail de l'auteur
Auteur Xiang Shen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Decomposition of LiDAR waveforms by B-spline-based modeling / Xiang Shen in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
[article]
Titre : Decomposition of LiDAR waveforms by B-spline-based modeling Type de document : Article/Communication Auteurs : Xiang Shen, Auteur ; Qing-Quan Li, Auteur ; Guofeng Wu, Auteur ; Jiasong Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 182 - 191 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] B-Spline
[Termes IGN] décomposition de Gauss
[Termes IGN] distribution, loi de
[Termes IGN] forme d'onde pleine
[Termes IGN] traitement du signal
[Termes IGN] transformation géométrique
[Termes IGN] translationRésumé : (Auteur) Waveform decomposition is a widely used technique for extracting echoes from full-waveform LiDAR data. Most previous studies recommended the Gaussian decomposition approach, which employs the Gaussian function in laser pulse modeling. As the Gaussian-shape assumption is not always satisfied for real LiDAR waveforms, some other probability distributions (e.g., the lognormal distribution, the generalized normal distribution, and the Burr distribution) have also been introduced by researchers to fit sharply-peaked and/or heavy-tailed pulses. However, these models cannot be universally used, because they are only suitable for processing the LiDAR waveforms in particular shapes. In this paper, we present a new waveform decomposition algorithm based on the B-spline modeling technique. LiDAR waveforms are not assumed to have a priori shapes but rather are modeled by B-splines, and the shape of a received waveform is treated as the mixture of finite transmitted pulses after translation and scaling transformation. The performance of the new model was tested using two full-waveform data sets acquired by a Riegl LMS-Q680i laser scanner and an Optech Aquarius laser bathymeter, comparing with three classical waveform decomposition approaches: the Gaussian, generalized normal, and lognormal distribution-based models. The experimental results show that the B-spline model performed the best in terms of waveform fitting accuracy, while the generalized normal model yielded the worst performance in the two test data sets. Riegl waveforms have nearly Gaussian pulse shapes and were well fitted by the Gaussian mixture model, while the B-spline-based modeling algorithm produced a slightly better result by further reducing 6.4% of fitting residuals, largely benefiting from alleviating the adverse impact of the ringing effect. The pulse shapes of Optech waveforms, on the other hand, are noticeably right-skewed. The Gaussian modeling results deviated significantly from original signals, and the extracted echo parameters were clearly inaccurate and unreliable. The B-spline-based method performed significantly better than the Gaussian and lognormal models by reducing 45.5% and 11.5% of their fitting errors, respectively. Much more precise echo properties can accordingly be retrieved with a high probability. Benefiting from the flexibility of B-splines on fitting arbitrary curves, the new method has the potentiality for accurately modeling various full-waveform LiDAR data, whether they are nearly Gaussian or non-Gaussian in shape. Numéro de notice : A2017-334 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.03.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.03.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85487
in ISPRS Journal of photogrammetry and remote sensing > vol 128 (June 2017) . - pp 182 - 191[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017063 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017062 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Direct georeferencing of airborne LiDAR data in national coordinates / Yongjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 84 (October 2013)
[article]
Titre : Direct georeferencing of airborne LiDAR data in national coordinates Type de document : Article/Communication Auteurs : Yongjun Zhang, Auteur ; Xiang Shen, Auteur Année de publication : 2013 Article en page(s) : pp 43 - 51 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] Chine
[Termes IGN] coordonnées géodésiques
[Termes IGN] déformation de projection
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] géoréférencement direct
[Termes IGN] orientation externe
[Termes IGN] projection
[Termes IGN] système de référence local
[Termes IGN] transformation de coordonnéesRésumé : (Auteur) The topographic mapping products of airborne light detection and ranging (LiDAR) are usually required in the national coordinates (i.e., using the national datum and a conformal map projection). Since the spatial scale of the national datum is usually slightly different from the World Geodetic System 1984 (WGS 84) datum, and the map projection frame is not Cartesian, the georeferencing process in the national coordinates is inevitably affected by various geometric distortions. In this paper, all the major direct georeferencing distortion factors in the national coordinates, including one 3D scale distortion (the datum scale factor distortion), one height distortion (the earth curvature distortion), two length distortions (the horizontal-to-geodesic length distortion and the geodesic-to-projected length distortion), and three angle distortions (the skew-normal distortion, the normal-section-to-geodesic distortion, and the arc-to-chord distortion) are identified and demonstrated in detail; and high-precision map projection correction formulas are provided for the direct georeferencing of the airborne LiDAR data. Given the high computational complexity of the high-precision map projection correction approach, some more approximate correction formulas are also derived for the practical calculations. The simulated experiments show that the magnitude of the datum scale distortion can reach several centimeters to decimeters for the low (e.g., 500 m) and high (e.g., 8000 m) flying heights, and therefore it always needs to be corrected. Our proposed practical map projection correction approach has better accuracy than Legat’s approach,1 but it needs 25% more computational cost. As the correction accuracy of Legat’s approach can meet the requirements of airborne LiDAR data with low and medium flight height (up to 3000 m above ground), our practical correction approach is more suitable to the high-altitude aerial imagery. The residuals of our proposed high-precision map projection correction approach are trivial even for the high flight height of 8000 m. It can be used for the theoretical applications such as the accurate evaluation of different GPS/INS attitude transformation methods to the national coordinates. Numéro de notice : A2013-516 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.07.003 Date de publication en ligne : 01/08/2013 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.07.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32653
in ISPRS Journal of photogrammetry and remote sensing > vol 84 (October 2013) . - pp 43 - 51[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013101 RAB Revue Centre de documentation En réserve L003 Disponible