Détail de l'auteur
Auteur Bisheng Yang |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR Type de document : Article/Communication Auteurs : Zhenyang Hui, Auteur ; Penggen Cheng, Auteur ; Bisheng Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données matricielles
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] optimisation (mathématiques)
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] semis de pointsRésumé : (auteur) To obtain satisfying results of individual tree detection from LiDAR points, parameters using traditional methods usually need to be adjusted by trials and errors. When encountering complex forest environments, the detection accuracy cannot be satisfied. To resolve this, a multi-level self-adaptive individual tree detection method was presented in this paper. The proposed method can be seen as a hybrid model, which combined the strength of both raster-based and point-based methods. Raster-based strategy was first used for achieving initial trees detection results, while the point-based strategy was adopted for optimizing the clustered trees. In the proposed method, crown width scales were estimated automatically. Meanwhile, multi-scales segmented results were fused together to take advantage of segmented results of both larger and small scales. Six different coniferous forests were adopted for testing. Experimental result shows that this study achieved the lowest omission and commission errors comparing with other three classical approaches. Meanwhile, the average F1 score in this paper is 0.84, which is much highest out of other methods. Numéro de notice : A2022-784 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103028 Date de publication en ligne : 24/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101887
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103028[article]Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR Type de document : Article/Communication Auteurs : Xue Ji, Auteur ; Bisheng Yang, Auteur ; Yuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4208714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du signal
[Termes IGN] forme d'onde pleine
[Termes IGN] Hainan (Chine)
[Termes IGN] lidar bathymétrique
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Single-wavelength bathymetric light detection and ranging (LiDAR) (532 nm) can provide seamless meter- and submeter-scale digital elevation model (DEMs) of both the terrestrial surface and seafloor. However, mixed terrestrial and bathymetric surfaces obtained by this sensor are challenging for full-waveform (FW) signal detection. This study addresses the issues in two FW mixed surfaces: accurate classification of terrestrial and nonterrestrial waveforms from the original waveforms without auxiliary information and flexible detection of peaks based on a new FW theoretical model. A novel FW signal detection model (FWSD) for single-wavelength bathymetric LiDAR is proposed without complex feature extraction and iterative procedure through waveform classification and segmentation. The raw FWs are divided into five categories for subsequent signal detection using a convolutional neural network that merges local descriptors with contextual information. The signal detection task is then split into FW segment recognition and peak extraction using a new FW model, which integrates a leapfrog sliding window FW segmentation, an improved extreme learning machine (ELM) algorithm for FW segment recognition, and a flexible signal detection framework. To search for the optimal initial parameters for ELM, a self-annealing particle swarm optimization (SAPSO) algorithm is introduced, and the output weight is adjusted by online sequence to improve its generalization. When combined with the Richardson–Lucy deconvolution (RLD) algorithm, FWSD can be adapted to deal with shallow water waveforms. Finally, a test demonstration with an airborne dataset shows that FWSD has higher detection efficiency and higher accuracy than Levenberg–Marquardt algorithm optimized generalized Gaussian model (LM-GGM) and RLD algorithm. Numéro de notice : A2022-661 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3198168 Date de publication en ligne : 11/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3198168 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101517
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 4208714[article]Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
[article]
Titre : Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Bisheng Yang, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 913 - 922 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] orientation relative
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] superposition de données
[Termes IGN] SURF (algorithme)Résumé : (Auteur) To register mobile mapping system (MMS) lidar points and panoramic-image sequences, a relative orientation model of panoramic images (PROM) is proposed. The PROM is suitable for cases in which attitude or orientation parameters are unknown in the panoramic-image sequence. First, feature points are extracted and matched from panoramic-image pairs using the SURF algorithm. Second, these matched feature points are used to solve the relative attitude parameters in the PROM. Then, combining the PROM with the absolute position and attitude parameters of the initial panoramic image, the MMS lidar points and panoramic-image sequence are registered. Finally, the registration accuracy of the PROM method is assessed using corresponding points manually selected from the MMS lidar points and panoramic-image sequence. The results show that three types of MMS data sources are registered accurately based on the proposed registration method. Our method transforms the registration of panoramic images and lidar points into image feature-point matching, which is suitable for diverse road scenes compared with existing methods. Numéro de notice : A2021-899 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00006R2 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.14358/PERS.21-00006R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99298
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 12 (December 2021) . - pp 913 - 922[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021121 SL Revue Centre de documentation Revues en salle Disponible
Titre : Remote sensing based building extraction Type de document : Monographie Auteurs : Mohammad Awrangjeb, Auteur ; Xiangyun Hu, Auteur ; Bisheng Yang, Auteur ; Jiaojiao Tian, Auteur Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 442 p. ISBN/ISSN/EAN : 978-3-03928-383-5 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image à haute résolution
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Editeur) Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D. Numéro de notice : 26305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Monographie DOI : 10.3390/books978-3-03928-383-5 Date de publication en ligne : 07/04/2020 En ligne : https://doi.org/10.3390/books978-3-03928-383-5 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95064 Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
[article]
Titre : Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Bisheng Yang, Auteur ; Xinlian Liang, Auteur ; Zhen Dong, Auteur ; Ronggang Huang, Auteur ; Yunsheng Wang, Auteur ; Wuyan Li, Auteur Année de publication : 2019 Article en page(s) : pp 94 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] canopée
[Termes IGN] données TLS (télémétrie)
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] fusion de données multisource
[Termes IGN] image ADAR
[Termes IGN] semis de points
[Termes IGN] surveillance forestièreRésumé : (Auteur) Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) systems are effective ways to capture the 3D information of forests from complementary perspectives. Registration of the two sources of point clouds is necessary for various forestry applications. Since the forest point clouds show irregular and natural point distributions, standard registration methods working on geometric keypoints (e.g., points, lines, and planes) are likely to fail. Hence, we propose a novel method to register the ALS and TLS forest point clouds through density analysis of the crowns. The proposed method extracts mode-based keypoints by the mean shift method and aligns them by maximum likelihood estimation. Firstly, the differences in the point densities of the ALS and TLS crowns are minimized to produce analogous modes, which represent the local maxima of the underlying probability density function (PDF). The mode-based keypoints are then aligned through the coherent point drift (CPD) algorithm, which is independent of the descriptor similarities and considers the alignment as a maximum likelihood estimation problem. The sets of keypoints derived from the two data sources need not be equal. Finally, the recovered transformation is applied to the original point clouds and refined through the standard iterative closest point (ICP) algorithm. In contrast to some of the existing methods, the proposed method avoids the geometric description of the forest point clouds. Furthermore, additional information such as tree diameter or height is not required to evaluate the similarities. The experiments in this study were conducted in a Scandinavian boreal forest, located in Evo, Finland. The proposed method was tested on four datasets (ALS data: a circle with a diameter of 60 m, multi-scan TLS data: 32 × 32 m) with heterogeneous tree species and structures. The results showed that the proposed probabilistic-based method obtains a good performance with a 3D distance residual of 0.069 m, and improved the accuracy of the registration when compared with the existing methods. Numéro de notice : A2019-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : doi.org/10.1016/j.isprsjprs.2019.08.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.008 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93356
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 94 - 107[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt vol 19 n° 3 - October 2016 - Special Issue: Mobile Mapping with Ubiquitous Point Clouds (Bulletin de Geo-spatial Information Science) / Bisheng YangPermalinkDynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence / Chi Chen in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)PermalinkAn automated method to register airborne and terrestrial laser scanning point clouds / Bisheng Yang in ISPRS Journal of photogrammetry and remote sensing, vol 109 (November 2015)PermalinkPattern-mining approach for conflating crowdsourcing road networks with POIs / Bisheng Yang in International journal of geographical information science IJGIS, vol 29 n° 5 (May 2015)PermalinkHierarchical extraction of urban objects from mobile laser scanning data / Bisheng Yang in ISPRS Journal of photogrammetry and remote sensing, vol 99 (January 2015)PermalinkGeometric structure simplification of 3D building models / Qingquan Li in ISPRS Journal of photogrammetry and remote sensing, vol 84 (October 2013)PermalinkThe design and implementation of spirit: a spatially aware search engine for information retrieval on the Internet / Ross S. Purves in International journal of geographical information science IJGIS, vol 21 n° 6-7 (july 2007)Permalink