Détail de l'auteur
Auteur Antonio Plaza |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Generalized composite kernel framework for hyperspectral image classification / J. Li in IEEE Transactions on geoscience and remote sensing, vol 51 n° 9 (September 2013)
[article]
Titre : Generalized composite kernel framework for hyperspectral image classification Type de document : Article/Communication Auteurs : J. Li, Auteur ; Prashanth Reddy Marpu, Auteur ; Antonio Plaza, Auteur ; José M. Bioucas-Dias, Auteur ; et al., Auteur Année de publication : 2013 Conférence : MicroRad 2012, 12th specialist meeting on microwave radiometry and remote sensing applications 05/03/2012 09/03/2012 Rome Italie Proceedings IEEE Article en page(s) : pp 4816 - 4829 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] données localisées
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] régression logistique
[Termes IGN] séparateur à vaste margeRésumé : (Auteur) This paper presents a new framework for the development of generalized composite kernel machines for hyperspectral image classification. We construct a new family of generalized composite kernels which exhibit great flexibility when combining the spectral and the spatial information contained in the hyperspectral data, without any weight parameters. The classifier adopted in this work is the multinomial logistic regression, and the spatial information is modeled from extended multiattribute profiles. In order to illustrate the good performance of the proposed framework, support vector machines are also used for evaluation purposes. Our experimental results with real hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed framework leads to state-of-the-art classification performance in complex analysis scenarios. Numéro de notice : A2013-536 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2230268 En ligne : https://doi.org/10.1109/TGRS.2012.2230268 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32673
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 9 (September 2013) . - pp 4816 - 4829[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013091 RAB Revue Centre de documentation En réserve L003 Disponible