Détail de l'auteur
Auteur Yichun Xie |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Developing shopping and dining walking indices using POIs and remote sensing data / Yingbin Deng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
[article]
Titre : Developing shopping and dining walking indices using POIs and remote sensing data Type de document : Article/Communication Auteurs : Yingbin Deng, Auteur ; Yingwei Yan, Auteur ; Yichun Xie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 22 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] achat
[Termes IGN] couvert végétal
[Termes IGN] distance
[Termes IGN] données environnementales
[Termes IGN] loisir
[Termes IGN] navigation pédestre
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] sport
[Termes IGN] température au sol
[Termes IGN] trajet (mobilité)Résumé : (auteur) Walking is one of the most commonly promoted traveling methods and is garnering increasing attention. Many indices/scores have been developed by scholars to measure the walkability in a local community. However, most existing walking indices/scores involve urban planning-oriented, local service-oriented, regional accessibility-oriented, and physical activity-oriented walkability assessments. Since shopping and dining are two major leisure activities in our daily lives, more attention should be given to the shopping or dining-oriented walking environment. Therefore, we developed two additional walking indices that focus on shopping or dining. The point of interest (POI), vegetation coverage, water coverage, distance to bus/subway station, and land surface temperature were employed to construct walking indices based on 50-meter street segments. Then, walking index values were categorized into seven recommendation levels. The field verification illustrates that the proposed walking indices can accurately represent the walking environment for shopping and dining. The results in this study could provide references for citizens seeking to engage in activities of shopping and dining with a good walking environment. Numéro de notice : A2020-310 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060366 Date de publication en ligne : 02/06/2020 En ligne : https://doi.org/10.3390/ijgi9060366 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95157
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 22 p.[article]A semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China / Hai Lan in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
[article]
Titre : A semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China Type de document : Article/Communication Auteurs : Hai Lan, Auteur ; Yichun Xie, Auteur Année de publication : 2013 Article en page(s) : pp 21 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classification floue
[Termes IGN] classification hybride
[Termes IGN] fusion d'images
[Termes IGN] image CBERS
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] prairieRésumé : (Auteur) Remote sensing techniques offer effective means for mapping plant communities. However, mapping grassland with fine vegetative classes over large areas has been challenging for either the coarse resolutions of remotely sensed images or the high costs of acquiring images with high-resolutions. An improved hybrid-fuzzy-classifier (HFC) derived from a semi-ellipsoid-model (SEM) is developed in this paper to achieve higher accuracy for classifying grasslands with Landsat images. The Xilin River Basin, Inner Mongolia, China, is chosen as the study area, because an acceptable volume of ground truthing data was previously collected by multiple research communities. The accuracy assessment is based on the comparison of the classification outcomes from four types of image sets: (1) Landsat ETM+ August 14, 2004, (2) Landsat TM August 12, 2009, (3) the fused images of ETM+ with CBERS, and (4) TM with CBERS, respectively, and by three classifiers, the proposed HFC-SEM, the tetragonal pyramid model (TPM) based HFC, and the support vector machine method. In all twelve classification experiments, the HFC-SEM classifier had the best overall accuracy statistics. This finding indicates that the medium resolution Landsat images can be used to map grassland vegetation with good vegetative detail when the proper classifier is applied. Numéro de notice : A2013-605 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.07.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.07.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32741
in ISPRS Journal of photogrammetry and remote sensing > vol 85 (November 2013) . - pp 21 - 31[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013111 RAB Revue Centre de documentation En réserve L003 Disponible