Détail de l'auteur
Auteur Almasi S. Maguya |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Adaptive algorithm for large scale DTM interpolation from lidar data for forestry applications in steep forested terrain / Almasi S. Maguya in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
[article]
Titre : Adaptive algorithm for large scale DTM interpolation from lidar data for forestry applications in steep forested terrain Type de document : Article/Communication Auteurs : Almasi S. Maguya, Auteur ; Virpi Junttila, Auteur ; Tuomo Kauranne, Auteur Année de publication : 2013 Article en page(s) : pp 74 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] couvert forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage de points
[Termes IGN] fonction spline d'interpolation
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de terrain
[Termes IGN] morphologie mathématique
[Termes IGN] Népal
[Termes IGN] penteRésumé : (Auteur) Light Detection and Ranging (lidar) has become a valuable tool in forest inventory because it yields accurate measurements of tree heights. However, tree height can be accurate only if the height of the ground, i. e., the Digital Terrain Model (dtm) is first accurately established. Although great advances have been made in lidar technology over the past decade, filtering lidar data for Digital Terrain Model (dtm) interpolation is still a challenge, especially in steep and complex terrain with forest cover. Several algorithms proposed in the literature address this challenge but their performance deteriorates with the decreasing point density caused by the presence of forest cover and steep slopes. In this paper, we propose a new adaptive algorithm for dtm interpolation from lidar data in steep terrain with forest cover. The algorithm partitions the input data and estimates a section of the dtm by fitting a linear or quadratic trend surface, or uses cubic spline interpolation depending on the complexity of the section of terrain. The performance of the algorithm is tested in three ways: by visual assessment, by comparison of the tree-height estimates produced using the generated dtm with those obtained using field survey, and by use of International Society for Photogrammetry and Remote Sensing (isprs) test data. Test results show that the algorithm can cope well with steep slopes and low lidar point densities, giving a more accurate estimate of average tree height compared to conventional algorithms. The algorithm can be used for dtm extraction in large scale forest inventory projects in challenging environments–complex terrain and low lidar point densities. Numéro de notice : A2013-608 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.08.005 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.08.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32744
in ISPRS Journal of photogrammetry and remote sensing > vol 85 (November 2013) . - pp 74 - 83[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013111 RAB Revue Centre de documentation En réserve L003 Disponible