Détail de l'auteur
Auteur Andreas Baumgartner |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Airborne prism experiment calibration information system / Andreas Hueni in IEEE Transactions on geoscience and remote sensing, vol 51 n° 11 (November 2013)
[article]
Titre : Airborne prism experiment calibration information system Type de document : Article/Communication Auteurs : Andreas Hueni, Auteur ; Karim Lenhard, Auteur ; Andreas Baumgartner, Auteur ; Michael E. Schaepman, Auteur Année de publication : 2013 Article en page(s) : pp 5169 - 5180 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] Airborne Prism Experiment
[Termes IGN] base de données relationnelles
[Termes IGN] capteur en peigne
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] image APEX
[Termes IGN] Java (langage de programmation)
[Termes IGN] Matlab
[Termes IGN] spectromètre imageur
[Termes IGN] spectroscopie
[Termes IGN] traçabilitéRésumé : (Auteur) The calibration of remote sensing instruments is a crucial step in the generation of products tied to international reference standards. Calibrating imaging spectrometers is particularly demanding due to the high number of spatiospectral pixels and, consequently, the large amount of data acquired during calibration sequences. Storage of these data and associated metadata in an organized manner, as well as the provision of efficient tools for the data analysis and fast and repeatable calibration coefficient generation with provenance information, is key to the provision of traceable measurements. The airborne prism experiment (APEX) calibration information system is a multilayered information technology solution comprising a database based on the entity-attribute-value (EAV) paradigm and software written in Java and Matlab, providing data access, visualization and processing, and handling the data volumes over the expected lifetime of the system. Although developed in the context of APEX, the system is rather generic and may be adapted to other pushbroom-based imagers with little effort. Numéro de notice : A2013-615 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2246575 En ligne : https://doi.org/10.1109/TGRS.2013.2246575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32751
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 11 (November 2013) . - pp 5169 - 5180[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013111 RAB Revue Centre de documentation En réserve L003 Disponible Automatische Extraktion von Straßen aus digitalen Luftbildern / Andreas Baumgartner (2003)
Titre : Automatische Extraktion von Straßen aus digitalen Luftbildern Titre original : [Extraction automatique des routes à partir d'images aériennes numériques] Type de document : Thèse/HDR Auteurs : Andreas Baumgartner, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2003 Collection : DGK - C Sous-collection : Dissertationen num. 564 Importance : 78 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-7696-5003-7 Langues : Allemand (ger) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] détection de contours
[Termes IGN] extraction du réseau routier
[Termes IGN] image numérisée
[Termes IGN] photographie aérienne
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] texture d'imageIndex. décimale : 33.30 Photogrammétrie numérique Résumé : (Auteur) This thesis proposes a new approach for the automatic extraction of roads from digital aerial imagery. It focuses on fully automatic extraction and uses an explicit object model. Compared to other approaches, the most prominent features of this thesis are the exploitation of the scale-space behavior of roads and the use of contextual information by means of global context regions and local relations between roads and other objects. The approach aims at road extraction in open rural areas. Panchromatic aerial images with a pixel size of approximately 0.2 to 0.5 meter on the ground serve as input data for the automatic extraction.The proposed approach makes use of several versions of the aerial image with different resolution. Roads are modelled as a network of intersections and links between these intersections. For different so-called global contexts, i.e., rural, forest, and urban area, the model defines relations between background objects and road objects. These relations, e.g., that a tree casts a shadow on a road-segment, determine so-called local contexts. These local contexts are modelled differently depending on the global context regions. An automatic segmentation of the aerial image into different global contexts by means of texture classification is used to focus the extraction on the most promising regions. Additionally, it allows to predict in which parts of the image the results will be most reliable. For the actual extraction of the roads edges are extracted in the original high resolution image (pixel size 0.2-0.5 m) and lines in an image of reduced resolution (pixel size 2-4 m). Using both resolution levels and explicit knowledge about roads hypotheses for road-segments are generated. They are grouped iteratively into longer segments. In addition to pure grouping criteria also knowledge about the local context and so-called "Ribbon-Snakes" are used to bridge gaps. For the construction of the road network, intersections are extracted. The examples presented and the results of an evaluation based on manually plotted reference data show the efficiency of the approach. Numéro de notice : 13163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=54900 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 13163-01 33.30 Livre Centre de documentation Photogrammétrie - Lasergrammétrie Disponible