Détail de l'auteur
Auteur Zheng-Rong Zou |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A penalized spline-based attitude model for high-resolution satellite imagery / Hongbo Pan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
[article]
Titre : A penalized spline-based attitude model for high-resolution satellite imagery Type de document : Article/Communication Auteurs : Hongbo Pan, Auteur ; Zheng-Rong Zou, Auteur ; Guo Zhang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 1849 - 1859 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] fonction spline
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image ZiYuan-3
[Termes IGN] orientationRésumé : (Auteur) Attitude models play a prominent role in the geometric processing of high-resolution satellite imagery (HRSI). Because of the high accuracy of the matching algorithm, attitude oscillations can occur in HRSI. Various methods for correcting this attitude oscillation with parallax observations have been proposed. However, few researchers have attempted to model the oscillation from the attitude records or have taken noise into consideration. In this paper, a penalized spline-based attitude model is proposed, which can model the oscillation with piecewise and continuously differentiable polynomials and smooth out the attitude noise with a penalty function. The balance between the fitting accuracy and noise smoothing is controlled by a penalty parameter, which is estimated by generalized cross-validation. Given that the attitude error introduces distortions into sensor-corrected images, the band-to-band registration of multispectral images is used to validate the attitude model. Five multispectral data sets captured by ZiYuan-3 are used to demonstrate the effectiveness of the proposed method. Compared with third-degree polynomials and cubic spline interpolation, the penalized spline model delivers the best performance by limiting the misregistration caused by the attitude model to within 0.1 pixels. Numéro de notice : A2016-128 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2489382 En ligne : https://doi.org/10.1109/TGRS.2015.2489382 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80015
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 3 (March 2016) . - pp 1849 - 1859[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016031 SL Revue Centre de documentation Revues en salle Disponible Hierarchical method of urban building extraction inspired by human perception / Chao Tao in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
[article]
Titre : Hierarchical method of urban building extraction inspired by human perception Type de document : Article/Communication Auteurs : Chao Tao, Auteur ; Yihua Tan, Auteur ; Zheng-Rong Zou, Auteur Année de publication : 2013 Article en page(s) : pp 1109 - 1119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification bayesienne
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] morphologie mathématique
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'imageRésumé : (Auteur) In a high-resolution satellite image, buildings can be considered as clustered objects belonging to the same category. Human perception of such objects consists of an initial identification of simple instances followed by recognition of more complicated ones by deduction. Inspired by this observation, a hierarchical building extraction framework is proposed to simulate the process, which includes three major components. First, a total variation-based segmentation algorithm is presented to decompose the given image into object-level elements. Then, shape analysis is applied to extract some common and easily identified rectangular buildings. Finally, the detection of buildings with complex structures is formulated as a deduction problem based on preceding extracted information in terms of maximum a posteriori (MAP) estimation, and a Bayesian based approach is proposed to deal with it. The experimental results demonstrate that the proposed framework is capable of efficiently identifying urban buildings from high-resolution satellite images. Numéro de notice : A2013-689 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.12.1109 En ligne : https://doi.org/10.14358/PERS.79.12.1109 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32825
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 12 (December 2013) . - pp 1109 - 1119[article]