Détail de l'auteur
Auteur Cristina Vega-Garcia |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessing post-fire regeneration in a Mediterranean mixed forest using lidar data and artificial neural networks / Haifa Debouk in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
[article]
Titre : Assessing post-fire regeneration in a Mediterranean mixed forest using lidar data and artificial neural networks Type de document : Article/Communication Auteurs : Haifa Debouk, Auteur ; Ramon Riera-Tatché, Auteur ; Cristina Vega-Garcia, Auteur Année de publication : 2013 Article en page(s) : pp 1121 - 1130 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Catalogne (Espagne)
[Termes IGN] classification par réseau neuronal
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt méditerranéenne
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] impact sur l'environnement
[Termes IGN] incendie de forêtRésumé : (Auteur) Post-wildfire management practices can greatly influence vegetation condition and dynamics, and are crucial in Mediterranean erosion-prone poor soil sites. Acquiring accurate ground inventory data is time-consuming, expensive and limited to small areas; but lidar data can be used to assess the impact of fires, and also to determine the convenient silvicultural measurements which should be carried out for site restoration. The aim of this paper was to assess the post-fire regeneration status of the vegetation in Sant Llorenç del Munt massif after a wildfire in summer 2003 by modeling the relationship between lidar height bins and canopy height model (CHM) with field data. Artificial Neural Network (ANN) prediction models provided estimations of vegetation fraction cover, average height (HM) over 1.30 m and number of stems over 1.30 m, with Pearson r values between 0.18 and 0.83. Classification models built with the same variables allowed separating two ground-based regeneration classes (good and scarce regeneration) with an approximate accuracy of 83 to 76 percent (model building and validation data, respectively). Numéro de notice : A2013-690 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.79.12.1121 En ligne : https://doi.org/10.14358/PERS.79.12.1121 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32826
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 12 (December 2013) . - pp 1121 - 1130[article]Evaluation of the influence of local fuel homogeneity on fire hazard through Landsat-5 TM texture measures / Cristina Vega-Garcia in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 7 (July 2010)
[article]
Titre : Evaluation of the influence of local fuel homogeneity on fire hazard through Landsat-5 TM texture measures Type de document : Article/Communication Auteurs : Cristina Vega-Garcia, Auteur ; J. Taay-Nieto, Auteur ; R. Blanco, Auteur ; E. Chuvieco, Auteur Année de publication : 2010 Article en page(s) : pp 853 - 864 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] combustible
[Termes IGN] image Landsat-TM
[Termes IGN] incendie
[Termes IGN] rayonnement lumineux
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] risque naturel
[Termes IGN] texture d'imageRésumé : (Auteur) This study analyzed the relationship between landscape homogeneity and fire hazard for a certain area and time period (1984 to 1995), by using logit models. Homogeneity was measured though eight texture measurements computed on visible and NIR bands of Landstat-5 TM data with varying kernel sizes. Several significant models could be developed to predict future burning at the pixel level for the study period. The best spectral band for detecting proneness to burn was TM1, the blue band, and best results were achieved with large window sizes and the Homogeneity texture measure. Numéro de notice : A2010-275 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : doi.org/10.14358/PERS.76.7.853 En ligne : https://doi.org/10.14358/PERS.76.7.853 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30469
in Photogrammetric Engineering & Remote Sensing, PERS > vol 76 n° 7 (July 2010) . - pp 853 - 864[article]