Détail de l'auteur
Auteur Kerry Cawse-Nicholson |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
On the fusion of lidar and aerial color imagery to detect urban vegetation and buildings / Madhurima Bandyopadhyay in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 2 (February 2017)
[article]
Titre : On the fusion of lidar and aerial color imagery to detect urban vegetation and buildings Type de document : Article/Communication Auteurs : Madhurima Bandyopadhyay, Auteur ; Jan Van Aardt, Auteur ; Kerry Cawse-Nicholson, Auteur ; Emmett Lentilucci, Auteur Année de publication : 2017 Article en page(s) : pp 123 - 136 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] fusion de données
[Termes IGN] image aérienne
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] zone urbaineRésumé : (Auteur) Three-dimensional (3D) data from light detection and ranging (lidar) sensor have proven advantageous in the remote sensing domain for characterization of object structure and dimensions. Fusion-based approaches of lidar and aerial imagery also becoming popular. In this study, aerial color (RGB) imagery, along with co-registered airborne discrete lidar data were used to separate vegetation and buildings from other urban classes/cover-types, as a precursory step towards the assessment of urban forest biomass. Both spectral and structural features such as object height, distribution of surface normals from the lidar, and a novel vegetation metric derived from combined lidar and RGB imagery, referred to as the lidar-infused vegetation index (LDVI) were used in this classification method. The proposed algorithm was tested on different cityscape regions to verify its robustness. Results showed a good separation of buildings and vegetation from other urban classes with on average an overall classification accuracy of 92 percent, with a kappa statistic of 0.85. These results bode well for the operational fusion of lidar and RGB imagery, often flown on the same platform, towards improved characterization of the urban forest and built environments. Numéro de notice : A2017-039 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.2.123 En ligne : https://doi.org/10.14358/PERS.83.2.123 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84140
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 2 (February 2017) . - pp 123 - 136[article]3D tree reconstruction from simulated small footprint waveform lidar / Jiaying Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
[article]
Titre : 3D tree reconstruction from simulated small footprint waveform lidar Type de document : Article/Communication Auteurs : Jiaying Wu, Auteur ; Kerry Cawse-Nicholson, Auteur ; Jan Van Aardt, Auteur Année de publication : 2013 Article en page(s) : pp 1147 - 1157 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuille (végétation)
[Termes IGN] forme d'onde
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Populus (genre)
[Termes IGN] reconstruction d'objet
[Termes IGN] squelettisation
[Termes IGN] tronc
[Termes IGN] variation saisonnièreRésumé : (Auteur) Lidar-based 3D tree reconstruction enables the retrieval of detailed tree structure; however, many existing methods are based on high-density discrete return lidar datasets. In this paper, we propose the use of small footprint waveform lidar data to achieve branch-level tree reconstruction for both leaf-off and leaf-on conditions. The DIRSIG simulation environment was used for algorithm validation purposes. Leaf-off data served as reference, and leaf-on reconstruction for a particular tree resulted in an average branch length difference of 0.07 m and an average angular difference of approximately 6 degrees for both tilt and azimuth angles. Compared to in situ methods this approach may be used by an airborne system for accurate estimation of forest biomass, forest inventory, land degradation, etc. in large scale applications. Furthermore, since this approach can also be applied on leaf-on trees, the tree skeleton characterization eventually can be conducted year round and will be less dependent on seasonal changes. Numéro de notice : A2013-691 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.79.12.1147 En ligne : https://doi.org/10.14358/PERS.79.12.1147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32827
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 12 (December 2013) . - pp 1147 - 1157[article]