Détail de l'auteur
Auteur Pradeep Kumar Garg |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] analyse texturale
[Termes IGN] bati
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réseau neuronal artificiel
[Termes IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques / M. Sarabuddin Mondal in Geocarto international, vol 28 n° 7-8 (November - December 2013)
[article]
Titre : Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques Type de document : Article/Communication Auteurs : M. Sarabuddin Mondal, Auteur ; Nayan Sharma, Auteur ; Martin Kappas, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2013 Article en page(s) : pp 632 - 656 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] bassin hydrographique
[Termes IGN] Brahmapoutre (fleuve)
[Termes IGN] carte d'occupation du sol
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] image multitemporelle
[Termes IGN] Inde
[Termes IGN] modèle conceptuel de données spatio-temporelles
[Termes IGN] occupation du sol
[Termes IGN] processus spatio-temorel
[Termes IGN] utilisation du solRésumé : (Auteur) An attempt has been made to explore and evaluate the Cellular Automata (CA) Markov modelling to monitor and predict the future land use and land cover (LULC) scenario in a part of Brahmaputra River basin using LULC maps derived from multi-temporal satellite images. CA Markov is a combined cellular automata/Markov chain/multi-criteria/multi-objective land allocation (MOLA) LULC prediction procedure that adds an element of spatial contiguity as well as knowledge base of the likely spatial distribution of transitions to Markov chain analysis. Evidence likelihood map was used for as knowledge base of the likely spatial procedure in CA Markov model. The predicting quantity and predicting location change have been analysed and statistically evaluated. The validation statistics indicated how well the comparison map agreed and disagreed with the reference map. Predicted results accuracy is slightly higher when compare to others studies of LULC change using CA Markov approaches. Numéro de notice : A2013-701 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2013.776641 Date de publication en ligne : 01/08/2013 En ligne : https://doi.org/10.1080/10106049.2013.776641 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32837
in Geocarto international > vol 28 n° 7-8 (November - December 2013) . - pp 632 - 656[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2013041 RAB Revue Centre de documentation En réserve L003 Disponible