Détail de l'auteur
Auteur Chengbin Deng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques / Chengbin Deng in ISPRS Journal of photogrammetry and remote sensing, vol 86 (December 2013)
[article]
Titre : The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques Type de document : Article/Communication Auteurs : Chengbin Deng, Auteur ; Changshan Wu, Auteur Année de publication : 2013 Article en page(s) : pp 100 - 110 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage automatique
[Termes IGN] image multibande
[Termes IGN] image Terra-MODIS
[Termes IGN] méthode des moindres carrés
[Termes IGN] surface imperméable
[Termes IGN] zone urbaineRésumé : (Auteur) Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available. Numéro de notice : A2013-705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.09.010 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32841
in ISPRS Journal of photogrammetry and remote sensing > vol 86 (December 2013) . - pp 100 - 110[article]