Détail de l'auteur
Auteur Zhijun Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessment of regression kriging for spatial interpolation: comparisons of seven GIS interpolation methods / Qingmin Meng in Cartography and Geographic Information Science, vol 40 n° 1 (January 2013)
[article]
Titre : Assessment of regression kriging for spatial interpolation: comparisons of seven GIS interpolation methods Type de document : Article/Communication Auteurs : Qingmin Meng, Auteur ; Zhijun Liu, Auteur ; Bruce E. Borders, Auteur Année de publication : 2013 Article en page(s) : pp 28 - 39 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] analyse comparative
[Termes IGN] interpolation spatiale
[Termes IGN] krigeage
[Termes IGN] lissage de données
[Termes IGN] régression
[Termes IGN] système d'information géographiqueRésumé : (Auteur) As an important GIS function, spatial interpolation is one of the most often used geographic techniques for spatial query, spatial data visualization, and spatial decision-making processes in GIS and environmental science. However, less attention has been paid on the comparisons of available spatial interpolation methods, although a number of GIS models including inverse distance weighting, spline, radial basis functions, and the typical geostatistical models (i.e. ordinary kriging, universal kriging, and cokriging) are already incorporated in GIS software packages. In this research, the conceptual and methodological aspects of regression kriging and GIS built-in interpolation models and their interpolation performance are compared and evaluated. Regression kriging is the combination of multivariate regression and kriging. It takes into consideration the spatial autocorrelation of the variable of interest, the correlation between the variable of interest and auxiliary variables (e.g., remotely sensed images are often relatively easy to obtain as auxiliary variables), and the unbiased spatial estimation with minimized variance. To assess the efficiency of regression kriging and the difference between stochastic and deterministic interpolation methods, three case studies with strong, medium, and weak correlation between the response and auxiliary variables are compared to assess interpolation performances. Results indicate that regression kriging has the potential to significantly improve spatial prediction accuracy even when using a weakly correlated auxiliary variable. Numéro de notice : A2013-741 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1080/15230406.2013.762138 En ligne : https://doi.org/10.1080/15230406.2013.762138 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32877
in Cartography and Geographic Information Science > vol 40 n° 1 (January 2013) . - pp 28 - 39[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2013011 RAB Revue Centre de documentation En réserve L003 Disponible