Détail de l'auteur
Auteur Joachim Niemeyer |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Contextual classification of lidar data and building object detection in urban areas / Joachim Niemeyer in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
[article]
Titre : Contextual classification of lidar data and building object detection in urban areas Type de document : Article/Communication Auteurs : Joachim Niemeyer, Auteur ; Franz Rottensteiner, Auteur ; Uwe Soergel, Auteur Année de publication : 2014 Article en page(s) : pp 152 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification contextuelle
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] milieu urbain
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (Auteur) In this work we address the task of the contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. It is a flexible approach for obtaining a reliable classification result even in complex urban scenes. In this way, we benefit from the consideration of context on the one hand and from the opportunity to use a large amount of features on the other hand. Considering the interactions in our experiments increases the overall accuracy by 2%, though a larger improvement becomes apparent in the completeness and correctness of some of the seven classes discerned in our experiments. We compare the Random Forest approach to linear models for the computation of unary and pairwise potentials of the CRF, and investigate the relevance of different features for the LiDAR points as well as for the interaction of neighbouring points. In a second step, building objects are detected based on the classified point cloud. For that purpose, the CRF probabilities for the classes are plugged into a Markov Random Field as unary potentials, in which the pairwise potentials are based on a Potts model. The 2D binary building object masks are extracted and evaluated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction. The evaluation shows that the main buildings (larger than 50 m2) can be detected very reliably with a correctness larger than 96% and a completeness of 100%. Numéro de notice : A2014-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32922
in ISPRS Journal of photogrammetry and remote sensing > vol 87 (January 2014) . - pp 152 - 165[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014011 RAB Revue Centre de documentation En réserve L003 Disponible
Titre : Conditional random fields for the classification of LiDAR point clouds Type de document : Article/Communication Auteurs : Joachim Niemeyer, Auteur ; Clément Mallet , Auteur ; Franz Rottensteiner, Auteur ; Uwe Soergel, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2011 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 38/4-W19 Conférence : ISPRS 2011, High-Resolution Earth Imaging for Geospatial Information workshop 14/06/2011 17/06/2011 Hanovre Allemagne OA ISPRS Archives Importance : 6 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forme d'onde pleine
[Termes IGN] prise en compte du contexte
[Termes IGN] semis de points
[Termes IGN] zone urbaine denseRésumé : (auteur) In this paper we propose a probabilistic supervised classification algorithm for LiDAR (Light Detection And Ranging) point clouds. Several object classes (i.e. ground, building and vegetation) can be separated reliably by considering each point's neighbourhood. Based on Conditional Random Fields (CRF) this contextual information can be incorporated into classification process in order to improve results. Since we want to perform a point-wise classification, no primarily segmentation is needed. Therefore, each 3D point is regarded as a graph's node, whereas edges represent links to the nearest neighbours. Both nodes and edges are associated with features and have effect on the classification. We use some features available from full waveform technology such as amplitude, echo width and number of echoes as well as some extracted geometrical features. The aim of the paper is to describe the CRF model set-up for irregular point clouds, present the features used for classification, and to discuss some results. The resulting overall accuracy is about 94 %. Numéro de notice : C2011-069 Affiliation des auteurs : MATIS+Ext (1993-2011) Thématique : IMAGERIE Nature : Communication DOI : 10.5194/isprsarchives-XXXVIII-4-W19-209-2011 Date de publication en ligne : 07/09/2012 En ligne : https://doi.org/10.5194/isprsarchives-XXXVIII-4-W19-209-2011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101398 Conditional random fields for urban scene : Classification with full waveform LiDAR Data / Joachim Niemeyer (2011)
Titre : Conditional random fields for urban scene : Classification with full waveform LiDAR Data Type de document : Article/Communication Auteurs : Joachim Niemeyer, Auteur ; Jan Dirk Wegner, Auteur ; Clément Mallet , Auteur ; Franz Rottensteiner, Auteur ; Uwe Soergel, Auteur Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2011 Conférence : PIA 2011, ISPRS Conference on Photogrammetric Image Analysis 05/10/2011 07/10/2011 Munich Allemagne OA ISPRS Archives Importance : pp 233 - 244 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forme d'onde pleine
[Termes IGN] prise en compte du contexte
[Termes IGN] semis de points
[Termes IGN] zone urbaine denseRésumé : (auteur) We propose a context-based classification method for point clouds acquired by full waveform airborne laser scanners. As these devices provide a higher point density and additional information like echo width or type of return, an accurate distinction of several object classes is possible. However, especially in dense urban areas correct labelling is a challenging task. Therefore, we incorporate context knowledge by using Conditional Random Fields. Typical object structures are learned in a training step and improve the results of the point-based classification process. We validate our approach with two real-world datasets and by a comparison to Support Vector Machines and Markov Random Fields. Numéro de notice : C2011-033 Affiliation des auteurs : MATIS+Ext (1993-2011) Thématique : IMAGERIE Nature : Communication DOI : 10.1007/978-3-642-24393-6_20 En ligne : https://doi.org/10.1007/978-3-642-24393-6_20 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85946 Documents numériques
peut être téléchargé
Conditional random fields for urban scene - postpublicationAdobe Acrobat PDF