Détail de l'auteur
Auteur Rogério Galante Negri |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines / Rogério Galante Negri in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines Type de document : Article/Communication Auteurs : Rogério Galante Negri, Auteur ; Alejandro C. Frery, Auteur ; Wallace Casaca, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2863 - 2876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse de sensibilité
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] détection des nuages
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] processus stochastique
[Termes IGN] zone homogèneRésumé : (auteur) Change detection is a topic of great interest in remote sensing. A good similarity metric to compute the variations among the images is the key to high-quality change detection. However, most existing approaches rely on the fixed threshold values or the user-provided ground truth in order to be effective. The inability to deal with artificial objects such as clouds and shadows is a significant difficulty for many change-detection methods. We propose a new unsupervised change-detection framework to address those critical points. The notion of homogeneous regions is introduced together with a set of geometric operations and statistic-based criteria to characterize and distinguish formally the change and nonchange areas in a pair of remote sensing images. Moreover, a robust and statistically well-posed family of stochastic distances is also proposed, which allows comparing the probability distributions of different regions/objects in the images. These stochastic measures are then used to train a support-vector-machine-based approach in order to detect the change/nonchange areas. Three study cases using the images acquired with different sensors are given in order to compare the proposed method with other well-known unsupervised methods. Numéro de notice : A2021-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009483 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009483 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97389
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2863 - 2876[article]An innovative support vector machine based method for contextual image classification / Rogério Galante Negri in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
[article]
Titre : An innovative support vector machine based method for contextual image classification Type de document : Article/Communication Auteurs : Rogério Galante Negri, Auteur ; Luciano Vieira Dutra, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 241 - 248 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification contextuelle
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moiréeRésumé : (Auteur) Several remote sensing studies have adopted the Support Vector Machine (SVM) method for image classification. Although the original formulation of the SVM method does not incorporate contextual information, there are different proposals to incorporate this type of information into it. Usually, these proposals modify the SVM training phase or make an integration of SVM classifications using stochastic models. This study presents a new perspective on the development of contextual SVMs. The main concept of this proposed method is to use the contextual information to displace the separation hyperplane, initially defined by the traditional SVM. This displaced hyperplane could cause a change of the class initially assigned to the pixel. To evaluate the classification effectiveness of the proposed method a case study is presented comparing the results with the standard SVM and the SVM post-processed by the mode (majority) filter. An ALOS/PALSAR image, PLR mode, acquired over an Amazon area was used in the experiment. Considering the inner area of test sites, the accuracy results obtained by the proposed method is better than SVM and similar to SVM post-processed by the mode filter. The proposed method, however, produces better results than mode post-processed SVM when considering the classification near the edges between regions. One drawback of the method is the computational cost of the proposed method is significantly greater than the compared methods. Numéro de notice : A2014-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32925
in ISPRS Journal of photogrammetry and remote sensing > vol 87 (January 2014) . - pp 241 - 248[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014011 RAB Revue Centre de documentation En réserve L003 Disponible