Détail de l'auteur
Auteur Chin-Chuan Han |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral image classification using nearest feature line embedding approach / Yang-Lang Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
[article]
Titre : Hyperspectral image classification using nearest feature line embedding approach Type de document : Article/Communication Auteurs : Yang-Lang Chang, Auteur ; Jan-Nan Liu, Auteur ; Chin-Chuan Han, Auteur ; Ying-Nong Chen, Auteur Année de publication : 2014 Article en page(s) : pp 278 - 287 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse discriminante
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image MASTER
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] occupation du sol
[Termes IGN] réduction géométriqueRésumé : (Auteur) Eigenspace projection methods are widely used for feature extraction from hyperspectral images (HSI) for the classification of land cover. Projection transformation is used to reduce higher dimensional feature vectors to lower dimensional vectors for more accurate classification of land cover types. In this paper, a nearest feature line embedding (NFLE) transformation is proposed for the dimension reduction (DR) of an HSI. The NFL measurement is embedded in the transformation during the discriminant analysis phase, instead of the matching phase. Three factors, including class separability, neighborhood structure preservation, and NFL measurement, are considered simultaneously to determine an effective and discriminating transformation in the eigenspaces for land cover classification. Three state-of-the-art classifiers, the nearest-neighbor, support vector machine, and NFL classifiers, were used to classify the reduced features. The proposed NFLE transformation is compared with different feature extraction approaches and evaluated using two benchmark data sets, the MASTER set at Au-Ku and the AVIRIS set at Northwest Tippecanoe County. The experimental results demonstrate that the NFLE approach is effective for DR in land cover classification in the field of Earth remote sensing. Numéro de notice : A2014-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2238635 En ligne : https://doi.org/10.1109/TGRS.2013.2238635 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32941
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 278 - 287[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve L003 Disponible